請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46539完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何志浩(Jr-Hau He) | |
| dc.contributor.author | Ming-Wei Chen | en |
| dc.contributor.author | 陳明威 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:14:28Z | - |
| dc.date.available | 2012-07-27 | |
| dc.date.copyright | 2010-07-27 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-22 | |
| dc.identifier.citation | Ch1
[1] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, 'Room-temperature ultraviolet nanowire nanolasers,' Science 292, 1897 (2001). [2] H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, 'Nanowire ultraviolet photodetectors and optical switches,' Advanced Materials 14, 158 (2002). [3] Z. L. Wang, 'Zinc oxide nanostructures: growth, properties and applications,' Journal of Physics-Condensed Matter 16, R829 (2004). [4] G. C. Yi, C. R. Wang, and W. I. Park, 'ZnO nanorods: synthesis, characterization and applications,' Semiconductor Science and Technology 20, S22 (2005). [5] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, 'ZnO nanowire UV photodetectors with high internal gain,' Nano Letters 7, 1003 (2007). [6] C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, 'Nanowire photodetectors,' Journal of Nanoscience and Nanotechnology 10, 1430 (2010). [7] P. Gao, Z. Z. Wang, K. H. Liu, Z. Xu, W. L. Wang, X. D. Bai, and E. G. Wang, 'Photoconducting response on bending of individual ZnO nanowires,' Journal of Materials Chemistry 19, 1002 (2009). [8] J. D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz, M. Manzanares, T. Andreu, A. Cirera, A. Romano-Rodriguez, and J. R. Morante, 'The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires,' Nanotechnology 19, 465501 (2008). Ch2 [1] M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, 'Catalytic growth of zinc oxide nanowires by vapor transport,' Advanced Materials 13, 113 (2001). [2] P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, 'Controlled growth of ZnO nanowires and their optical properties,' Advanced Functional Materials 12, 323 (2002). [3] J. H. Song, X. D. Wang, E. Riedo, and Z. L. Wang, 'Systematic study on experimental conditions for large-scale growth of aligned ZnO nanwires on nitrides,' Journal of Physical Chemistry B 109, 9869 (2005). [4] K. Ip, G. T. Thaler, H. S. Yang, S. Y. Han, Y. J. Li, D. P. Norton, S. J. Pearton, S. W. Jang, and F. Ren, 'Contacts to ZnO,' Journal of Crystal Growth 287, 149 (2006). Ch3 [1] C. Y. Chen, C. A. Lin, M. J. Chen, G. R. Lin, and J. H. He, 'ZnO/Al2O3 core-shell nanorod arrays: growth, structural characterization, and luminescent properties,' Nanotechnology 20, 185605 (2009). [2] J. H. He, S. Singamaneni, C. H. Ho, Y. H. Lin, M. E. McConney, and V. V. Tsukruk, 'A thermal sensor and switch based on a plasma polymer/ZnO suspended nanobelt bimorph structure,' Nanotechnology 20, 065502 (2009). [3] H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, 'Nanowire ultraviolet photodetectors and optical switches,' Advanced Materials 14, 158 (2002). [4] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, 'ZnO nanowire UV photodetectors with high internal gain,' Nano Letters 7, 1003 (2007). [5] J. H. He, P. H. Chang, C. Y. Chen, and K. T. Tsai, 'Electrical and optoelectronic characterization of a ZnO nanowire contacted by focused-ion-beam-deposited Pt,' Nanotechnology 20, 135701 (2009). [6] C. S. Lao, M. C. Park, Q. Kuang, Y. L. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, 'Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,' Journal of the American Chemical Society 129, 12096 (2007). [7] M. W Chen, C. Y. Chen, D. H. Lien, Y. Ding, and J. H. He, 'Photoconductive enhancement of single ZnO nanowire through localized Schottky effects,' Optics Express 18, 14836 (2010). [8] E. Comini, C. Baratto, G. Faglia, M. Ferroni, and G. Sberveglieri, 'Single crystal ZnO nanowires as optical and conductometric chemical sensor,' Journal of Physics D-Applied Physics 40, 7255 (2007). [9] X. S. Fang, Y. Bando, M. Y. Liao, T. Y. Zhai, U. K. Gautam, L. Li, Y. Koide, and D. Golberg, 'An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability,' Advanced Functional Materials 20, 500 (2010). [10] T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. A. Yao, Y. Bando, and D. Golberg, 'Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,' ACS Nano 4, 1596 (2010). [11] T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. A. Yao, Y. Bando, and D. Golberg, 'Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,' ACS 21 Nano 4, 1596 (2010). [12] J. Zhou, Y. D. Gu, Y. F. Hu, W. J. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, 'Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,' Applied Physics Letters 94, 191103 (2009). [13] J. D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz, M. Manzanares, T. Andreu, A. Cirera, A. Romano-Rodriguez, and J. R. Morante, 'The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires,' Nanotechnology 19, 465501 (2008). [14] J. Nayak, J. Kasuya, A. Watanabe, and S. Nozaki, 'Persistent photoconductivity in ZnO nanorods deposited on electro-deposited seed layers of ZnO,' Journal of Physics-Condensed Matter 20, 195222 (2008). [15] P. Liu, G. W. She, Z. L. Liao, Y. Wang, Z. Z. Wang, W. S. Shi, X. H. Zhang, S. T. Lee, and D. M. Chen, 'Observation of persistent photoconductance in single ZnO nanotube,' Applied Physics Letters 94, 063120 (2009). [16] P. Gao, Z. Z. Wang, K. H. Liu, Z. Xu, W. L. Wang, X. D. Bai, and E. G. Wang, 'Photoconducting response on bending of individual ZnO nanowires,' Journal of Materials Chemistry 19, 1002 (2009). [17] Z. M. Liao, K. J. Liu, J. M. Zhang, J. Xu, and D. P. Yu, 'Effect of surface states on electron transport in individual ZnO nanowires,' Physics Letters A 367, 207 (2007). [18] W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, M. E. Welland, and T. Lee, 'Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowire field effect transistors,' Nano Letters 8, 950 (2008). [19] W. Y. Wang, H. D. Xiong, M. D. Edelstein, D. Gundlach, J. S. Suehle, C. A. Richter, W. K. Hong, and T. Lee, 'Low frequency noise characterizations of ZnO nanowire field effect transistors,' Journal of Applied Physics 101, 044313 (2007). [20] M. Ishigami, J. H. Chen, E. D. Williams, D. Tobias, Y. F. Chen, and M. S. Fuhrer, 'Hooge's constant for carbon nanotube field effect transistors,' Applied Physics Letters 88, 203116 (2006). [21] Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, 'ZnO nanowire field-effect transistor and oxygen sensing property,' Applied Physics Letters 85, 5923 (2004). [22] Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, 'Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements,' Applied Physics Letters 86, 123117 (2005). 22 [23] C. Y. Chen, C. A. Lin, M. J. Chen, G. R. Lin, and J. H. He, 'ZnO/Al2O3 core-shell nanorod arrays: growth, structural characterization, and luminescent properties,' Nanotechnology 20, 185605 (2009). [24] W. K. Hong, D. K. Hwang, I. K. Park, G. Jo, S. Song, S. J. Park, T. Lee, B. J. Kim, and E. A. Stach, 'Realization of highly reproducible ZnO nanowire field effect transistors with n-channel depletion and enhancement modes,' Applied Physics Letters 90, 243103 (2007). [25] A. Rose, 'Space-charge-limited currents in solids,' Physical Review 97, 1538 (1955). [26] Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, 'High-performance UV detector made of ultra-long ZnO bridging nanowires,' Nanotechnology 20, 045501 (2009). Ch4 [1] J. H. He, S. Singamaneni, C. H. Ho, Y. H. Lin, M. E. McConney, and V. V. Tsukruk, 'A thermal sensor and switch based on a plasma polymer/ZnO suspended nanobelt bimorph structure,' Nanotechnology 20, 065502 (2009). [2] X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, 'ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,' Critical Reviews in Solid State and Materials Sciences 34, 190 (2009). [3] X. S. Fang, Y. Bando, M. Y. Liao, U. K. Gautam, C. Y. Zhi, B. Dierre, B. D. Liu, T. Y. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, 'Single-crystalline ZnS nanobelts as ultraviolet-light sensors,' Advanced Materials 21, 2034 (2009). [4] X. Y. Ma, J. W. Pan, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang, 'Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si,' Optics Express 17, 14426 (2009). [5] W. Dai, Q. Yang, F. X. Gu, and L. M. Tong, 'ZnO subwavelength wires for fast-response mid-infrared detection,' Optics Express 17, 21808 (2009). [6] H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, 'Nanowire ultraviolet photodetectors and optical switches,' Advanced Materials 14, 158 (2002). [7] Y. Liu, Z. Y. Zhang, H. L. Xu, L. H. Zhang, Z. X. Wang, W. L. Li, L. Ding, Y. F. Hu, M. Gao, Q. Li, and L. M. Peng, 'Visible light response of unintentionally doped ZnO nanowire field effect transistors,' Journal of Physical Chemistry C 113, 16796 (2009). [8] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, 'ZnO nanowire UV photodetectors with high internal gain,' Nano Letters 7, 1003 (2007). [9] C. H. Lin, T. T. Chen, and Y. F. Chen, 'Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,' Optics Express 16, 16916 (2008). [10] C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, 'High photocurrent gain in SnO2 nanowires,' Applied Physics Letters 93, 112115 (2008). [11] J. H. He, P. H. Chang, C. Y. Chen, and K. T. Tsai, 'Electrical and optoelectronic characterization of a ZnO nanowire contacted by focused-ion-beam-deposited Pt,' Nanotechnology 20, 135701 (2009). [12] J. B. K. Law, and J. T. L. Thong, 'Simple fabrication of a ZnO nanowire 34 photodetector with a fast photoresponse time,' Applied Physics Letters 88, 133114-1 (2006). [13] J. Zhou, Y. D. Gu, Y. F. Hu, W. J. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, 'Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,' Applied Physics Letters 94, 191103 (2009). [14] J. D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz, M. Manzanares, T. Andreu, A. Cirera, A. Romano-Rodriguez, and J. R. Morante, 'The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires,' Nanotechnology 19, 465501 (2008). [15] R. S. Aga, D. Jowhar, A. Ueda, Z. Pan, W. E. Collins, R. Mu, K. D. Singer, and J. Shen, 'Enhanced photoresponse in ZnO nanowires decorated with CdTe quantum dot,' Applied Physics Letters 91, 232108 (2007). [16] C. S. Lao, M. C. Park, Q. Kuang, Y. L. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, 'Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,' Journal of the American Chemical Society 129, 12096 (2007). [17] N. Kouklin, 'Cu-doped ZnO nanowires for efficient and multispectral photodetection applications,' Advanced Materials 20, 2190 (2008). [18] V. P. Zhdanov, 'Nm-sized metal particles on a semiconductor surface, Schottky model, etc,' Surface Science 512, L331 (2002). [19] H. Chen, H. Z. Zhang, L. Fu, Y. Chen, J. S. Williams, C. Yu, and D. P. Yu, 'Nano Au-decorated boron nitride nanotubes: Conductance modification and field-emission enhancement,' Applied Physics Letters 92, 243105 (2008). [20] Y. Mori, and H. Kohno, 'Resistance switching in a SiC nanowire/Au nanoparticle network,' Nanotechnology 20, 285705 (2009). [21] J. H. He, C. H. Ho, C. W. Wang, Y. Ding, L. J. Chen, and Z. L. Wang, 'Growth of crossed ZnO nanorod networks induced by polar substrate surface,' Crystal Growth & Design 9, 17 (2009). [22] J. H. He, P. H. Chang, C. Y. Chen, and K. T. Tsai, 'Electrical and optoelectronic characterization of a ZnO nanowire contacted by focused-ion-beam-deposited Pt,' Nanotechnology 20, 135701 (2009). [23] J. H. He, C. H. Ho, and C. Y. Chen, 'Polymer functionalized ZnO nanobelts as oxygen sensors with a significant response enhancement,' Nanotechnology 20, 065503 (2009). [24] C. Y. Chen, C. A. Lin, M. J. Chen, G. R. Lin, and J. H. He, 'ZnO/Al2O3 core-shell nanorod arrays: growth, structural characterization, and luminescent properties,' Nanotechnology 20, 185605 (2009). 35 [25] S. J. Chang, T. J. Hsueh, I. C. Chen, and B. R. Huang, 'Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles,' Nanotechnology 19, 175502 (2008). [26] K. Ip, G. T. Thaler, H. S. Yang, S. Y. Han, Y. J. Li, D. P. Norton, S. J. Pearton, S. W. Jang, and F. Ren, 'Contacts to ZnO,' Journal of Crystal Growth 287, 149 (2006). [27] B. J. Coppa, R. F. Davis, and R. J. Nemanich, 'Gold Schottky contacts on oxygen plasma-treated, n-type ZnO(000-1),' Applied Physics Letters 82, 400 (2003). [28] A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, 'Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,' Nano Letters 5, 667 (2005). [29] V. Dobrokhotov, D. N. McIlroy, M. G. Norton, A. Abuzir, W. J. Yeh, I. Stevenson, R. Pouy, J. Bochenek, M. Cartwright, L. Wang, J. Dawson, M. Beaux, and C. Berven, 'Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles,' Journal of Applied Physics 99, 104302 (2006). [30] K. Jacobi, G. Zwicker and A. Gutmann, 'Work function, electron affinity and band bending of zinc oxide surfaces,' Surface Science 141, 109 (1984) [31] J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, 'Photoconductive gain modelling of GaN photoconductors,' Semiconductor Science and Technology 13, 563 (1998). Ch5 [1] Y. Hu, J. Zhou, P.-H. Yeh, Z. Li, T.-Y. Wei, and Z. L. Wang, 'Supersensitive, fast-response nanowire sensors by using Schottky contacts,' Advanced Materials (2010) (DOI:10.1002/adma.201000278). [2] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, 'Room-temperature ultraviolet nanowire nanolasers,' Science 292, 1897 (2001). [3] H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, 'Nanowire ultraviolet photodetectors and optical switches,' Advanced Materials 14, 158 (2002). [4] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, 'ZnO nanowire UV photodetectors with high internal gain,' Nano Letters 7, 1003 (2007). [5] J. Zhou, Y. D. Gu, Y. F. Hu, W. J. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, 'Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,' Applied Physics Letters 94, 191103 (2009). [6] Z. L. Wang, 'Zinc oxide nanostructures: growth, properties and applications,' Journal of Physics-Condensed Matter 16, R829 (2004). [7] G. C. Yi, C. R. Wang, and W. I. Park, 'ZnO nanorods: synthesis, characterization and applications,' Semiconductor Science and Technology 20, S22 (2005). [8] S. H. Ko, I. Park, H. Pan, N. Misra, M. S. Rogers, C. P. Grigoropoulos, and A. P. Pisano, 'ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process,' Applied Physics Letters 92, 154102 (2008). [9] V. Pachauri, A. Vlandas, K. Kern, and K. Balasubramanian, 'Site-specific self-assembled liquid-gated ZnO nanowire transistors for sensing applications,' Small 6, 589 (2010). [10] C. Yan, N. Singh, and P. S. Lee, 'Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time,' Applied Physics Letters 96, 053108 (2010). [11] Z. Y. Fan, J. C. Ho, Z. A. Jacobson, H. Razavi, and A. Javey, 'Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry,' Proceedings of the National Academy of Sciences of the United States of America 105, 11066 (2008). [12] Z. Y. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A. C. Ford, Y. L. 45 Chueh, and A. Javey, 'Toward the development of printable nanowire electronics and sensors,' Advanced Materials 21, 3730 (2009). [13] Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, 'High-performance UV detector made of ultra-long ZnO bridging nanowires,' Nanotechnology 20, 045501 (2009). [14] J. H. He, P. H. Chang, C. Y. Chen, and K. T. Tsai, 'Electrical and optoelectronic characterization of a ZnO nanowire contacted by focused-ion-beam-deposited Pt,' Nanotechnology 20, 135701 (2009). [15] J. H. He, C. H. Ho, and C. Y. Chen, 'Polymer functionalized ZnO nanobelts as oxygen sensors with a significant response enhancement,' Nanotechnology 20, 065503 (2009). [16] J. D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz, M. Manzanares, T. Andreu, A. Cirera, A. Romano-Rodriguez, and J. R. Morante, 'The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires,' Nanotechnology 19, 465501 (2008). [17] P. Gao, Z. Z. Wang, K. H. Liu, Z. Xu, W. L. Wang, X. D. Bai, and E. G. Wang, 'Photoconducting response on bending of individual ZnO nanowires,' Journal of Materials Chemistry 19, 1002 (2009). [18] J. B. K. Law and J. T. L. Thong, 'Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,' Applied Physics Letters 88, 133114 (2006). [19] P. Liu, G. W. She, Z. L. Liao, Y. Wang, Z. Z. Wang, W. S. Shi, X. H. Zhang, S. T. Lee, and D. M. Chen, 'Observation of persistent photoconductance in single ZnO nanotube,' Applied Physics Letters 94, 063120 (2009). [20] J. Nayak, J. Kasuya, A. Watanabe, and S. Nozaki, 'Persistent photoconductivity in ZnO nanorods deposited on electro-deposited seed layers of ZnO,' Journal of Physics-Condensed Matter 20, 195222 (2008). [21] S. C. Kung, W. E. van der Veer, F. Yang, K. C. Donavan, and R. M. Penner, '20 mus photocurrent response from lithographically patterned nanocrystalline Cadmium Selenide nanowires,' Nano Letters 10, 1481 (2010). [22] C. S. Lao, M. C. Park, Q. Kuang, Y. L. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, 'Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,' Journal of the American Chemical Society 129, 12096 (2007). [23] S. W. Lee, M. C. Jeong, J. M. Myoung, G. S. Chae, and I. J. Chung, 'Magnetic alignment of ZnO nanowires for optoelectronic device applications,' Applied Physics Letters 90, 133115 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46539 | - |
| dc.description.abstract | 本論文討論了氧化鋅奈米線的光電流效應及其機制,並利用實驗之結果提出方法,有效地提高奈米線紫外光感測器的效能並討論其結果。
首先,論文中利用製備單根氧化鋅奈米線的光感測器研究表面效應對於光激發之載子複合行為的影響。結果顯示,由於表面效應的主宰,未照光時完全空乏的奈米線將表現出增強型的場效電晶體行為以及空間電荷限制電流的傳輸行為。而在照光後的光電流回復階段,光電流隨時間衰減的行為被發現和照射光強度及奈米線本身直徑有所關連,進而顯示光激發載子的複合是由表面能帶彎曲行為所主導。相關的模型及實驗結果之解釋將在第三章中詳細討論。 第二,論文中利用奈米金粒子對於氧化鋅奈米線的表面修飾方法,證明其所產生的局部蕭基接面效應將可有效提升奈米線光偵測器之光電流以及光電增益的表現。由於局部蕭基接面效應所造成的空間電荷分佈改變,光激發之電子電洞對更易產生空間之分離,進而造成光電流之增強。另外發現,由於奈米金粒子修飾的奈米線對於照光時所造成的表面能帶彎曲變化相對較小,使得光偵測器在高強度紫外光雷射照射時仍可保有高光電增益特性。 最後,論文中提出一個簡單的方法來製作氧化鋅奈米帶網絡的紫外光偵測器,且證明該偵測器無論在光電流表現以及動態反應上都表現良好。這是由於奈米帶間的接觸產生了能量障壁並阻礙了電子的傳輸,而在照光時由於能量障壁的減弱,使得元件表現出對光的高敏感性。結果顯示,氧化鋅奈米帶網絡的光偵測器具有製程便宜且高效能表現的優點,並對於以奈米結構為基礎的大面積化光電元件提供了另一種觀點。 | zh_TW |
| dc.description.abstract | In this thesis, the mechanisms of photoconductivity in ZnO nanowires (NWs) are discussed in detail, and the improvement methods for nanowire photodetectors (PDs) are proposed and discussed.
First of all, since surface effects are widely recognized to greatly influence the properties of nanostructures, we report the evaluation of the surface effect on the photocarrier relaxation behavior by using a single ZnO NW ultraviolet (UV) photodetector. The pronounced surface effect leads to the enhanced-mode device behavior and the space-charge-limited transport of a single ZnO NW PD in dark. In the recovery phase, the decay of photocurrent is found to be strongly related to the power of UV light and the diameter of NWs, indicating that the photocarrier relaxation behavior is dominated by the surface band bending. A model for the relaxation behavior based on the surface band bending of NWs is proposed to interpret the experimental results. Second, we demonstrate the Au nanoparticle (NP) decoration as an effective way to enhance both photocurrent and photoconductive gain of single ZnO NW PDs through localized Schottky effects. The enhancement is caused by the enhanced space charge effect due to the existence of the localized Schottky junctions under open-circuit conditions at the NW surfaces, leading to a more pronounced electron-hole separation effect. Since the band-bending under illumination varies relatively small for an Au NP-decorated ZnO NW, the decay of gain is less prominent with increased excitation power, demonstrating the feasibility for a PD to maintain a high gain under high-power illumination. Finally, an efficient way to fabricate ZnO nanobelt (NB) networks as UV PDs is proposed. The network PDs are demonstrated to show high sensitivity to UV light and exhibit fast photoresponse and recovery behaviors. The high performance is resulted from an additional conduction mechanism that is not available for single nanowire devices. The NB-NB junctions in a network device act as energy barriers to hinder the carrier transportation, and the reduction of energy barriers under illumination accounts for the high photosensitivity of NB network PDs. These results suggest that ZnO NB networks could be promising for inexpensive PDs and applicable on other large area nanostructure-based optoelectronics devices. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:14:28Z (GMT). No. of bitstreams: 1 ntu-99-R97941040-1.pdf: 4184774 bytes, checksum: 44e7c512f50192fac3901f6e4517ce04 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書........................................................................................................ I
致謝............................................................................................................................... II 摘要.............................................................................................................................. III Abstract ........................................................................................................................ IV Table of Contents ......................................................................................................... VI List of Figures ............................................................................................................ VII Chapter 1 Introduction ................................................................................................ 1 References .............................................................................................................. 2 Chapter 2 Experiments ................................................................................................ 3 References .............................................................................................................. 8 Chapter 3 Photocarrier Relaxation Behavior of Single ZnO Nanowire: the Effect of Surface Band Bending ................................................................................................... 9 3.1 Introduction ................................................................................................... 9 3.2 Experiments ................................................................................................ 11 3.3 Results and discussion ................................................................................ 12 3.4 Summary ..................................................................................................... 19 References ............................................................................................................ 20 Chapter 4 Photoconductive Enhancement of Single ZnO Nanowire through Localized Schottky Effects .......................................................................................... 23 4.1 Introduction ................................................................................................. 23 4.2 Experiments ................................................................................................ 24 4.3 Results and discussion ................................................................................ 25 4.4 Summary ..................................................................................................... 32 References ............................................................................................................ 33 Chapter 5 ZnO Nanobelt Networks as Efficient Ultraviolet Photodetectors with High Sensitivity ........................................................................................................... 36 5.1 Introduction ................................................................................................. 36 5.2 Experiments ................................................................................................ 37 5.3 Results and discussion ................................................................................ 38 5.4 Summary ..................................................................................................... 43 References ............................................................................................................ 44 Chapter 6 Conclusion ................................................................................................ 46 Appendix ...................................................................................................................... 47 | |
| dc.language.iso | en | |
| dc.subject | 奈米金粒子 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 奈米線 | zh_TW |
| dc.subject | 光偵測器 | zh_TW |
| dc.subject | 光電流 | zh_TW |
| dc.subject | photodetecto | en |
| dc.subject | Au nanoparticle | en |
| dc.subject | photocurrent | en |
| dc.subject | ZnO | en |
| dc.subject | nanowire | en |
| dc.title | 氧化鋅奈米線光電流特性之研究 | zh_TW |
| dc.title | Photoconductivity in ZnO nanowires | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林清富,張之威,闕郁倫 | |
| dc.subject.keyword | 氧化鋅,奈米線,光偵測器,光電流,奈米金粒子, | zh_TW |
| dc.subject.keyword | ZnO,nanowire,photodetecto,photocurrent,Au nanoparticle, | en |
| dc.relation.page | 50 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
