Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46525
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾萬年
dc.contributor.authorMing-Yen Tzengen
dc.contributor.author曾明彥zh_TW
dc.date.accessioned2021-06-15T05:13:41Z-
dc.date.available2015-07-29
dc.date.copyright2010-07-29
dc.date.issued2010
dc.date.submitted2010-07-22
dc.identifier.citation第一節 外文文獻
Al-Husaini M, Al-Ayoub S, Dashti J (2001) Age validation nagroor, Pomadasys kaakan (Cuvier, 1830) (Family: Haemulidae) in Kuwaiti waters. Fish. Res. 53: 71 – 81.
Blaber SJM (1987) Factors affecting recruitment and survival of mugilids in estuaries and coastal waters of southeastern Africa. Am. Fish. Soc. Symp. 1: 507 – 518.
Brown R, Severin KP (1999) Elemental distribution within polymorphic inconnu (Stenodus leucichthys) otoliths is affected by crystal structure. Can. J. Fish. Aquat. Sci. 56: 1898 – 1903.
Brown RJ, Severin KP (2009) Otolith chemistry analysis indicate that water Sr:Ca is the primary factor influencing otolith Sr:Ca for freshwater and diadromous fish but not for marine fish. Can. J. Fish. Aquat. Sci. 66: 1790 – 1808.
Brulhet J (1975) Observations on the biology of Mugil cephalus ashenteensis and the possibility of its aquaculture on the Mauritanian coast. Aquaculture. 5: 271 – 281.
Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can. J. Fish. Aquat. Sci. 41: 1014 – 1032.
Campana SE, Casselman JM (1993) Stock discrimination using otolith shape analysis. Can. J. Fish. Aqust. Sci. 50: 1062 – 1083.
Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188: 263 – 297.
Campana SE (2004) Photographic atlas of fish otolith of the Northwest Atlantic Ocean. NRC Research Press, Ottawa, Ontario. pp. 284.
Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H (2004) Effects of sex, stock and environment on the shape of Atlantic cod (Gadus morhua) otoliths. Can. J. Fish. Aquat. Sci. 51 (9): 1942 – 1950.
Cardona L (2006) Habitat selection by grey mullets (Osteichthyes: Mugilidae) in Mediterranean estuaries: the role of salinity. Scientia Marina. 70 (3): 443 – 455.
Carlström D (1963) A crystallographic study of vertebrate otoliths. Biol. Bull. 124: 441 – 463.
Carr MH, Hixon MA (1995) Predation effects on early post-settlement survivorship of coral-reef fishes. Mar. Ecol. Prog. Ser. 124: 31 – 42.
Chang CW, Tzeng WN (2000) Species composition and seasonal occurrence of mullets (Pisces, Mugilidae) in the Tansui estuary northwest Taiwan. J. Fish. Soc. Taiwan. 27: 253 – 262.
Chang CW, Tzeng WN, Lee YC (2000) Recruitment and hatching dates of grey mullet (Mugil cephalus L.) juveniles in the Tansui estuary of northwest Taiwan. Zool. Stud. 39: 99 – 106.
Chang CW (2003) Use of otolith microstructure and microchemistry to study life history and migratory environment of grey mullet Mugil cephalus in the coastal waters of Taiwan. PhD dissertation, National Taiwan University, Taipei, Taiwan.
Chang CW, Iizuka Y, Tzeng WN (2004) Migratory environmental history of the grey mullet Mugil cephalus as revealed by otolith Sr:Ca ratios. Mar. Ecol. Prog. Ser. 269: 277 – 288.
Chang CW, Lin SH, Iizuka Y, Tzeng WN (2004) Relationship between Sr:Ca ratios in otolith of grey mullet Mugil cephalus and ambient salinity: validation, mechanisms, and applications. Zool. Stud. 43: 74 – 85.
Chang CW, Tzeng WN (2006) Spatial and temporal variations of grey mullet resource in the coast of Taiwan: species identification, production and aquaculture. Fisheries Extension NTU 18: 25 – 42.
Chen WY, Su WC (1986) Reproductive biology of the grey mullet, Mugil cephalus L., of Taiwan. In: Study on the resource of grey mullet in Taiwan, 1983 – 1985. Kaohsiung Branch TFRI, Kaohsiung. pp. 73 – 80.
Chen WY, Su WC, Shao KT, Lin CP (1989) Morphometric studies of the grey mullet (Mugil cephalus) from the waters around Taiwan. J. Fish. Soc. Taiwan. 16: 153 – 163.
Chu YW, Han YS, Wang CH, You CF, Tzeng WN (2006) The sex-ratio reversal of the Japanese eel Anguilla japonica in the Kaoping River of Taiwan: The effect of cultured eels and its implication. Aquaculture. 261: 1230 – 1238.
Connell SD, Jones GP (1991) The influence of habitat complexity on post recruitment processes in a temperate reef fish population. J. Exp. Mar. Biol. Ecol. 151: 271 – 294.
Degens ET, Deuser WG, Haedrich RL (1969) Molecular structure and composition of fish otolith. Mar. Biol. 2: 105 – 113.
Elsdon TS, Gillanders BM (2003) Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Rev. Fish. Biol. Fisheries. 13: 219 – 235.
Elsdon TS, Gillanders BM (2004) Fish otolith chemistry influenced by exposure to multiple environmental variables. J. Exp. Mar. Biol. And Ecol. 313: 269 – 284.
Gauldie RW (1986) Vaterite otoliths from Chinook salmon (Oncorhynchus tshawytscha). NZ. J. Mar. Freshw. Res. 20: 209 – 217.
Gauldie RW, Sharma SK, Volk E (1997) Micro-Raman spectral study of vaterite and aragonite otoliths of the coho salmon, Oncorhynchus kisutch. Comp. Biochem. Physiol. A. 118: 753 – 757.
Han YS, Tzeng WN (2006) Use of the sex ratio as means of resource assessment for the Japanese eel Anguilla japonica: a case study in the Kaoping River, Taiwan. Zool. Stud. 45: 255 – 263.
Han YS, Tzeng WN (2007) Sex-dependent habitat use by the Japanese eel Anguilla japonica in Taiwan. Mar. Ecol. 338: 193 – 198.
Hsu CC (2005) The relationship between otolith microstructure and early life history events of juvenile grey mullet Mugil cephalus. Master dissertation, National Taiwan University, Taipei, Taiwan.
Hsu CC, Han YS, Tzeng WN (2007) Evidence of flathead mullet Mugil cephalus L. spawning in waters northeast of Taiwan. Zool. Stud. 46: 717 – 725.
Hsu CC, Chang CW, Iizuka Y, Tzeng WN (2009) A growth check deposited at estuarine arrival in otoliths of juvenile flathead mullet (Mugil cephalus L.). Zool. Stud. 48: 315 – 324.
Hsu CC (2009) Use of natural markers to study population structure and migratory environmental history of Mugil cephalus L. in the coastal waters of Taiwan. PhD dissertation, National Taiwan University, Taipei, Taiwan.
Huang CS, Weng CF, Lee SC (2001) Distinguishing two types of grey mullet, Mugil cephalus L. (Mugiliformes: Mugilidae), by using glucose-6-phosphate isomerase (GPI) allozymes with special reference to enzyme activities. J Comp. Physiol-B. Biochem. Syst. Environ. Physiol. 171: 387 – 394.
Irie T (1955) The crystal texture of the otolith of a marine teleost Pseudosciaena. J. Fac. Fish. Anim. Husb. Hiroshima Univ. 1: 1 – 8.
Johnson DW, McClendon EL (1970) Differential distribution of striped mullet, Mugil cephalus Linnaeus. Calif. Fish. Game. 56: 138 - &.
Kalish JM (1991b) C-13 and O-18 isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar. Ecol. Prog. Ser. 74: 137 – 159.
Kuo CL (1986) Oceanographic conditions in Taiwan Strait during the grey mullet season of 1984 and 1985. In: Study on the resource of grey mullet in Taiwan, 1983 – 1985. Kaohsiung Branch TFRI, Kaohsiung. pp. 27 – 34.
Kuo CM, Nash CE, Shehadeh ZH (1974 a) A procedural guide to induce spawning in grey mullet (Mugil cephalus L.). Aquaculture. 3: 1 – 14.
Kuo CM, Nash CE, Shehadeh ZH (1974 b) The effects of temperature and photoperiod on ovarian development in captive grey mullet (Mugil cephalus L.) Aquaculture. 3: 25 – 43.
Landret JP (1975) Contŕibution á l’étude de Mugil cephalus et comparaison ayec dáutres espèces de Mugilidae. Thesis, Paris.
Lecomte-Finiger R (1992) The crystalline ultrastructure of otoliths of the eel (A. anguilla). J. Fish. Biol. 40: 181 – 190.
Lee SC (1992) Fish fauna and abundance of some dominant species in the estuary of Tanshi, northwestern Taiwan. J. Fish. Soc. Taiwan. 19: 263 – 271.
Lenanton R, Hodgkin E. (1985) Life history strategies in some temperate Australian estuaries. In: fish community ecology in estuaries and coastal lagoons: towards an ecosystem integration. Editorial Universitaria, UNAM-PUAL-ICML, Mexico. pp. 267 – 284.
Levin PS (1994) Fine-scale temporal variation in recruitment of a temperate demersal fish: the importance of settlement versus post-settlement loss. Oecologia 97: 124 – 133.
Liao IC (1975) The experiments on the induced breeding of the grey mullet in Taiwan from 1963 – 1973. Aquaculture. 6: 31 – 58.
Liao IC, Chao NH (1991) Grey mullet culture in Taiwan. In: CRC Handbook of Mariculture, Vol II. CRC press. Boca Rton, Florida, USA. pp. 117 – 132.
Lin SH, Chang CW, Iizuka Y, Tzeng WN (2007) Salinities, not diets, affect strontium/calcium ratios in otoliths of Anguilla japonica. J. Exp. Mar. Biol. And Ecol. 341: 254 – 263.
Liu CH (1986) Survey of the spawning grounds of grey mullet. In: Study on the resource of grey mullet in Taiwan, 1983 – 1985. Kaohsiung Branch TFRI, Kaohsiung. pp. 63 – 72.
Liu CH, Shen SC (1991) A revision of the mugilid fishes from Taiwan. Bull. Inst. Zool. Acad. Sin. 30: 273 – 288.
Liu CH, Tzeng WN (1972) Age and growth of white croaker, Argyrosomus argentatus (Houttuyn), in the East China Sea and the Taiwan Strait. J. Fish. Soc. Taiwan. 1: 20 – 30.
Liu CH (2000) Variation of the mtDNA control region and population genetics of the Grey mullet (Mugil cephalus) in Taiwan. Master dissertation, National Taiwan University, Taipei, Taiwan.
Loubens G, Panfili J (1997) Biologie de Colossoma macropomum (Teleostei, Serrasalmidae) dans le basin du Mamoré (Amazonie bolivienne). Ichthyological Exploration of Freshwaters. 8: 1 – 22.
Lowenstam HA, Weiner S (1989) On Biomineralization. Oxford University Press, NY. pp. 315.
McDonough CJ, Roumillat WA, Wenner CA (2003) Fecundity and spawning season of striped mullet (Mugil cephalus L.) in South Carolina estuaries. Fish. Bull. 101: 822 – 834.
Maisey JG (1987) Notes on the structure and phylogeny of vertebrate otoliths. Copeia. 2: 495 – 499.
Mann S, Parker SB, Ross MD, Scarnulis AJ, Williams RJP (1983) The ultrastructure of the calcium carbonate balance organs of the inner ear: an ultra-high resolution electron microscopy study. Proc. R. Soc. Lond. B. 218: 415 – 424.
Melancon S, Fryer BJ, Ludsin SA, Gagnon JE, Yang Z (2005) Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths. Can. J. Fish. Aquat. Sci. 62: 2609 – 2619.
Miller MB, Clough AM, Batson JN, Vachet RW (2006) Transition metal binding to cod otolith proteins. J. Exp. Mar. Biol. Ecol. 329: 135 – 143.
Morales-Nin B (1986) Chemical composition of the otoliths of the sea bass (Dicentrarchus labrax Linnaeus, 1758) (Pisces, Serranidae). Cybium. 10: 115 – 120.
Moreira F, Assis CA, Almeida PR, Costa JL, Costa MJ (1992) Trophic relationships in the community of the Upper Tagus Estuary (Portugal: a preliminary approach. Estuar. Coast. Shelf-Sci. 34: 617 – 623.
Nash CE, Shehadeh ZH (1980) Review of breeding and propagation techniques for grey mullet, Mugil cephalus L. ICLARM Stud. Rev. 31: 1 – 40.
Oliverira AM, Farina M, Ludka IP, Kachar B (1996) Vaterite, calcite, aragonite in the otoliths of three species of piranha. Naturwissen. 83: 133 – 135.
Panfili J, de Pontual H, Troadec H, Wright PJ (2001) Manual of fish sclerochronology. XLC., Le Relecq Kerhuon, France. pp. 372.
Pannella G (1971) Fish otoliths: daily growth layers and periodical patterns. Science. 173: 1124 – 1127.
Patterson WP, Smith GR, Lohmann KC (1993) Continental paleothermometry and seasonality using isotopic composition of aragonite otoliths in freshwater fishes. Geophys Monoger. 78: 191 – 202.
Popper AN, Lu ZM (2000) Structure-function relationships in fish otolith organs. Fish. Res. 46: 15 – 25.
Power AM, Ramcharitar J, Campana SE (2005) Why otolith? Insights from inner ear physiology and fisheries biology. Mar. Freshw. Res. 56: 447 – 459.
Radtke RL (1984) Formation and structural composition of larval striped mullet otoliths. Transactions of the American Fisheries Society. 113: 186 – 191.
Robertson DR (1998) Abundances of surgeonfishes on patch-reefs in Caribbean Panama: due to settlement, or post-settlement events? Mar. Biol. 97: 495 – 501.
Sadovy Y, Severin KP (1994) Elemental patterns in red hind (Epinephelus guttatus) otoliths from Bermuda and Puerto Rico reflect growth rate, not temperature. Can. J. Fish. Aquat. Sci. 51: 133 – 141.
Secor DH, Henderson-Arzapalo A, Piccoli PM (1995) Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes? J. Exp. Mar. Biol. Ecol. 195: 15 – 33.
Secor DH, Rooker JR (2000) Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fisheries Res. 46: 359 – 371.
Shiao JC, Lin LY, Horng JL, Hwang PP, Kaneko T (2005) How can teleostean inner ear hair cells maintain the proper association with the accreting otolith? J. Comp. Neuro. 488: 331 – 341.
Shiao JC, Ložys L, Iizuka Y, Tzeng WN (2006) Migratory patterns and contribution of stocking to the population of European eel in Lithuanian waters as indicated by otolith Sr:Ca ratios. J. Fish. Biol. 69: 749 – 769.
Shulman MJ, Ogden JC (1987) What controls tropical reef fish populations: recruitment or benthic mortality? An example in the Caribbean reef fish Haemulon flavolineatum. Mar. Ecol. Prog. Ser. 39: 233 – 242.
Shyu CZ, Lee TJ (1985) Hydrographic studies on the area of Taiwan Strait in winter using satellite IR imagery and its relationships to the formation of grey mullet fishing ground. J. Fish. Soc. Taiwan. 12: 98 – 122.
Smith KA, Deguara K (2003) Formation and annual periodicity of opaque zones in sagittal otoliths of Mugil cephalus (Pisces: Mugilidae). Mar. Fresh. Reasearch. 54: 57 – 67.
Stenger AH (1959) A study of the structure and development of certain reproductive tissues of Mugil cephalus Linnaeus. Zoologica. 44: 53 – 69.
Stransky C, Baumannb H, Fevolden SE, Harbitz Alf, Høie H, Kjell H, Nedreaas, Salberg AB, Skarstein TH (2008) Separation of Norwegian coastal cod and Northeast Arctic cod by outer otolith shape analysis. Fisheries Research. 90: 26 – 35.
Su WC, Kawasaki T (1995) Characteristics of the life history of grey mullet from Taiwan waters. Fish. Sci. 61: 377 – 381.
Summerfelt RC, Hall GE (1987) The age and growth of fishes. Ames, The Iowa State Unuversity. pp. 443.
Sweeting RM, Beamish RJ, Neville CM (2004) Crystalline otoliths in teleosts: Comparisons between hatchery and wild coho salmon (Oncorhynchus kisutch) in the Strait of Georgia. Rev. Fish. Biol. Fish. 14: 361 – 369.
Thorrold SR, Campana SE, Jones CM, Swart PK (1997a) Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim Cosmochim Acta. 61: 2909 – 2919.
Thorrold SR, Jones CM, Campana SE (1997b) Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulates). Limnol. Oceanogr. 42 (1): 102 – 111.
Tung IH (1967) On the egg development and larval stage of the Grey mullet, Mugil cephalus Linnaeus. Rep. Inst. Fish. Bio. Ministry of Economic Affairs and National Taiwan University. 3 (1): 187 – 210.
Tung IH (1981) On the fishery biology of the grey mullet Mugil cephalus in Taiwan. Report of the Institute of Fishery Biology of Ministry of Economic Aflairs and National Taiwan University. 3: 38 – 101.
Tzeng WN, Wu HF, Wickström H (1994) Scanning electron microscopic analysis of annulus microstructure in otolith of European eel, Anguilla Anguilla. J. Fish. Biol. 45: 479 – 492.
Tzeng WN (1996) Effects of salinity and ontogenetic movements on strontium:calcium ratios in the otolith of Japanese eel Anguilla japonica Temminick and Schlegel. J. Exp. Mar. Biol. Ecol. 199: 111 – 122.
Tzeng WN, Chang CW, Wang CH, Shiao JC, Iizuka Y, Yang YJ, You CF, Ložys L (2007) Misidentification of the migratory history of anguillid eels by Sr/Ca ratios of vaterite otoliths. Mar. Ecol. Prog. Ser. 348: 285 – 295.
Wallace JH (1975) Aspects of the biology of Mugil cephalus in a hypersaline estuarine lake on the east coast of South Africa. Aquaculture. 5: 111.
Wang CH, Hsu CC, Chang CW, You CF, Tzeng WN (2010) The migratory environmental history of freshwater resident flathead mullet Mugil cephalus L. in the Tanshui River, Northern Taiwan. Zool. Stud. 49
第二節 中文文獻
王漢泉 (1984) 新店溪秀朗橋魚類死亡原因探討。中國水產,第377期,第6 – 12頁。
李培芬,林明志,許嘉恩(2000)竹圍紅樹林之景觀變遷。遙感探測,第20期,第73 – 88頁。
楊樹森 (2009) 九十八年度淡水河系生態指標及生物指標分析。行政院環境保護署報告(計畫編號:EPA-98-1605-02-01)。
謝莉顒(2003)淡水河感潮河段水層及底棲群聚溶氧代謝之研究。國立中興大學生命科學系碩士學位論文,台中。
蕭仁傑(2002)以耳石日週輪與鍶鈣比探討淡水鰻Anguilla australis、A. reinhardtii以及A. dieffenbachii的初期生活史與仔魚輸送途徑。國立台灣大學動物學研究所博士論文,台北。
龔任義(2000)新店溪之地形研究。國立中央大學應用地質研究所碩士學位論文,桃園,第2 – 59頁。
邵廣昭(2010)台灣魚類資料庫,中央研究院
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46525-
dc.description.abstract為了瞭解烏魚(Mugil cephalus)在淡水河流域的生活史特徵及洄游環境史,從2008年4月起至2009年12月止按季節採集淡水河下游及其中上游的基隆河和新店溪的烏魚樣本,共設置34個測站,採獲826尾樣本。同時測定各測站水溫及鹽度等物化因子及相關的生物因子包括浮游藻類及底棲生物量等。每尾烏魚皆測量其外部形態,分析耳石的年輪以及測定性腺成熟度(GSI)的月別變化。並利用電子微探儀(EPMA)測定耳石Sr/Ca比的時序列變化,以便了解其洄游環境。此外,為了驗證耳石邊緣Sr/Ca比與環境鹽度之關係,本研究也採集基隆八斗子外海(鹽度33 PSU)的68尾烏魚,進行耳石Sr/Ca比分析。主要發現如下所述:
(1)耳石邊緣相對距離(RMD)證實了烏魚耳石的年輪為一年形成一輪,可以用來判讀其年齡。冬季淡水河下游的烏魚以0歲和3歲以上居多,而上游的新店溪及基隆河則以2歲至3歲的烏魚居多。由年齡及體長組成的時空分布顯示仔魚春季入添後會繼續上溯並成長至性成熟為止,冬季時高年齡的烏魚向淡水河下游移動準備產卵。
(2)耳石邊緣的平均Sr/Ca比在海水域、河口域以及淡水域的烏魚之間有顯著的差異性(ANOVA, p < 0.05),而且耳石Sr/Ca比與鹽度呈正相關關係。棲息在33 PSU以上的烏魚,其耳石Sr/Ca比的平均值大於6.383×10-3;棲息在淡水者,其耳石Sr/Ca比平均值小於3.283×10-3;棲息在河口域者,其耳石平均Sr/Ca比則介於兩者之間。因此耳石Sr/Ca比可以用來回推烏魚在淡海水之間的洄游環境史。其次,由耳石原基Sr/Ca比的變化,發現烏魚的產卵或仔魚的棲息環境可分為三個類型,亦即Type 1(海水型)、Type 2(河口型)及Type 3(淡水型)。
(3)由耳石Sr/Ca比的變化與耳石年輪出現位置之關係,發現烏魚有很明顯的季節性移動現象,亦即一歲以後的成魚,冬季時會往鹽度高的外海越冬,夏季時則進入淡水河流域覓食。同時由耳石原基Sr/Ca比的類型及成魚耳石Sr/Ca比的時序列變化也發現成魚的棲地利用會延續仔魚時期所棲息的環境。換言之,河口型和淡水型的烏魚,其仔魚期也幾乎是同樣的類型。
(4)淡水河流域烏魚生殖腺指數(GSI)的季節性變化之最高值出現在10月,但指數的最高值只有8 %遠低於東北海域產卵群GSI最大值的20 %。而且卵細胞之最高成熟度也只達到卵黃發生期(Vitellogenic stage),並未到達排卵的最終成熟階段(Final maturation stage)。因此,推測烏魚在淡水河產卵的可能性極低。
(5)由各測站的烏魚性比、鹽度及營養豐富度三者之間的關係,發現營養豐富的測站雌魚的比例較高,反之則雄魚的比例較高,顯示烏魚的棲地利用有性擇現象存在。
綜合以上結果:烏魚在淡水河流域的分布在不同的鹽度環境,包括中上游的淡水環境,下游的鹹淡水環境以及海水環境。仔魚入添到淡水河流域一般都會成長至性成熟為止才移出至外海,成熟之後很少再回來。GSI值的高低以及卵細胞的發育程度也顯示烏魚在淡水河內產卵的可能性極低。另外,烏魚為了有效繁延下一代,雌魚會利用食物較豐富的區域。本研究認為淡水河流域是烏魚的哺育場也是攝餌場,因此淡水河涵養的資源量將影響外海產卵族群量,所以淡水河環境的維護極其重要。
zh_TW
dc.description.abstractTo understand the life history traits and the migratory behavior of grey mullets in the Tansui River System, 826 grey mullets were collected during different seasons from 34 sampling sites located on the river mouth of Tansui River to the upper streams, Xindian and Keelung Streams, from April, 2008 to December, 2009. At the same time, the environmental factors such as salinity and algal and benthos densities were also measured. The morphological traits and the monthly changes in GSI of each fish were also measured. The otolith (sagitta) was extracted for age determination and temporal changes of Sr/Ca ratio by Electron microprobe analyzer (EPMA) for identifying the migratory environmental history of the fish. In addition to this, 68 mullets were collected off the coast (salinity: 33 PSU) of Badoutzu in Keelung, north of Taiwan, to validate the relationship between otolith marginal Sr/Ca ratio and environmental salinity. The results indicated that:
(1) relative marginal distance (RMD) demonstrated that the year ring of the otolith was completely formed in a period of one year. Age determination by the otolith year rings showed that the age structure in the lower reach of the Tanshui River during winter was composed primary of individuals greater than 3 years old with few less than 1 year old. On the other hand, individuals aged 2 to 3 years old were mostly pooled in Xidian and Keelung Streams. This phenomenon indicated that older mullets migrated to the river mouth for spawning during winter, while the larvae or juveniles recruited into the river during spring, to grow in the middle or upper tributaries of the river until maturity.
(2) Otolith Sr/Ca ratio had a positive relationship with environmental salinity, hence, otolith Sr/Ca ratio could be used to trace back the migratory environmental history of fish. Otolith Sr/Ca ratio was significantly different among seawater, estuary, and freshwater (ANOVA, p < 0.05). Mean otolith Sr/Ca ratio greater than 6.383×10-3 indicated that the fish inhabited environment whose salinity was more than 33 PSU. On the other hand, mean otolith Sr/Ca ratio less than 3.283×10-3 indicated that the fish inhabited freshwater. Depending on the Sr/Ca ratio of the primordium, the environment in which the larvae inhabited can be classified into Type 1 (Seawater type), Type 2 (Estuary type), and Type 3 (Freshwater type), respectively.
(3) Adult fish more than 1-year old migrated to the high salinity environment during winter, but went back to the river for feeding during summer. In addition, the environment in which the larvae inhabited influenced the habitat use of the adult fish, that is, Type 2 (Estuary type) and Type 3 (Freshwater type) individuals preferred the initial environment until sexual maturity. In general, mullets in the Tanshui River System gradually migrated to the middle and lower stream of the river as they grow.
(4) Monthly changes of gonadosomatic index (GSI) showed peak value (8 %) during October, but this value was extremely low, compared to the GSI (20 %) of the spawning group in Northeastern Taiwan. The egg cells of the mullets captured during the spawning season was in vitellogenic stage, and not in final maturation stage. Hence, the probability of mullets spawning in the river was low.
(5) The relationship between sex ratio, environmental salinity, and the food density showed that there were more female fish in the nutrient-rich environment, whereas in the nutrient-poor, more male fish were found. This phenomenon indicated that the habitat use of the mullets was influenced by sex.
In conclusion, the larvae or juveniles of mullets were wildly distributed in the Tansui River System, growing in the river until sexual maturity. As the fish matured, they migrated to the sea for spawning. Evidences from GSI and egg histology indicated that the possibility of mullets spawning in the river was extremely low. In addition to this, female fish preferred to food-rich environment for growth.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:13:41Z (GMT). No. of bitstreams: 1
ntu-99-R97b45027-1.pdf: 14545856 bytes, checksum: fca384585bacf6ad179d8041519e053b (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員審定書
謝辭………………………………………………………………………………………I
中文摘要…………………………………………………………………………….…..II
英文摘要………………………………………………………………………………IV
第一章 緒論…………………………………………………………………………...1
第一節 烏魚的生物學及洄游生活史……………………………………………...1
第二節 耳石的構造及化學組成…………………………………………………...3
2-1 耳石的型態…………………………………………………………………3
2-2 耳石的微細構造……………………………………………………………4
2-3 耳石的微量元素組成分析及其應用………………………………………6
第三節 研究目的…………………………………………………………………...8
第二章 材料與方法…………………………………………………………………...9
第一節 採樣設計及樣本處理……………………………………………………...9
第二節 淡水河流域環境因子和生物因子的空間變化…………………………10
第三節 全耳石年齡的判讀及驗證……………………………………………….11
第四節 鍶鈣比分析……………………………………………………………….12
第五節 生殖腺成熟度分析…………………………………………………….…16
第六節 性比的空間分布與環境營養之關係分析……………………………….17
第七節 統計分析………………………………………………………………….18
第三章 結果………………………………………………………………………….19
第一節 年齡與成長………………………………………………………………19
1-1 年輪形成的週期性……………………………………………………….19
1-2 年齡和體長組成…………………………………………………………..19
1-3 雌魚和雄魚的成長率差異………………………………………………..20
第二節 耳石鍶鈣比的變化與外在環境鹽度之關係…………………………….22
2-1 耳石鍶鈣比與鹽度之關係……………………………………………......22
2-2 耳石鍶鈣比與鹽度之回歸關係…………………………………………22
第三節 從耳石鍶鈣比的時序列變化所看到的烏魚之洄游行為……………….24
3-1 仔魚時期的洄游行為……………………………………………………..24
3-2 稚魚至成魚時期的洄游行為……………………………………………..24
3-3 季節的洄游行為…………………………………………………………26
第四節 生殖腺成熟度的月別變化………………………………………………27
第五節 生活史策略的性別差異………………………………………………….27
5-1 性比與環境鹽度…………………………………………………………..27
5-2 環境鹽度及餌料生物的豐富度…………………………………………..27
第四章 討論………………………………………………………………………….29
第一節 利用耳石年輪查定烏魚年齡的可靠性…………………………………29
第二節 烏魚的年齡組成………………………………………………………….30
第三節 利用耳石鍶鈣比重建淡水河烏魚的洄游環境………………………….31
3-1 耳石鍶鈣比與環境鹽度的關係…………………………………………..31
3-2 由耳石Sr/Ca比的時序列變化所看到淡水河烏魚的洄游行為…………32
第四節 烏魚在淡水河內產卵的可能性之探討…………………………………34
第五節 淡水河烏魚的棲地利用及成長之雌雄差異…………………………….36
第五章 結論…………………………………………………………………………37
第六章 參考文獻…………………………………………………………………….38
第一節 外文文獻…………………………………………………………………38
第二節 中文文獻……………………………………………………………….....48
表……………………………………………………………………………………….49
圖……………………………………………………………………………………….56
附錄………………………………………………………………………………….....80
表目錄
Table 1. 淡水河下游及其上游的基隆河、新店溪和大漢溪的烏魚調查測點………49
Table 2. 淡水河烏魚的平均尾叉長、平均體重以及平均年齡的地點間、年間和季節性變化………………………………………………………………………52
Table 3. 淡水河下游、基隆河及新店溪的烏魚年齡之變方分析表(one way ANOVA table)和SNK均值兩兩比較…………………………………………………53
Table 4. 耳石平均鍶鈣比值與鹽度之關係…………………………………………54
Table 5. 淡水域、河口域以及近海三種環境中的烏魚耳石邊緣鍶鈣比(mean ± SD)之單因子變方分析表(one way ANOVA table)……………………………55
圖目錄
Fig. 1台灣西北部淡水河流域烏魚採樣地點………………………………………56
Fig. 2淡水河下游至上游測站的平均鹽度空間變化圖……………………………57
Fig. 3浮游藻類與低棲生物密度的空間變化………………………………………...58
Fig. 4烏魚成熟時的生殖腺外觀……………………………………………………...59
Fig. 5烏魚的耳石(矢狀石)以及年輪構造…………………………………………...60
Fig. 6未經處理的烏魚耳石年齡與橫切的耳石薄片後經鹽酸腐蝕後所呈現的耳石之年齡對照………………………………………………………………….....61
Fig. 7耳石平均(± SD)相對邊緣距離(RMD)的月別變化…………………………..62
Fig. 8淡水河流域烏魚的年齡組成…………………………………………………...63
Fig. 9淡水河下游烏魚體長組成之季節性變化……………………………………...64
Fig. 10烏魚雌雄別的成長曲線……………………………………………………….67
Fig. 11烏魚耳石邊緣鍶鈣比與鹽度關係之四分位圖………………………………..68
Fig. 12個別的耳石Sr/Ca比與鹽度和平均耳石Sr/Ca比與鹽度之回歸關係……….69
Fig. 13海水型(Type 1)烏魚的耳石Sr/Ca比時序列變化……………………………70
Fig. 14河口型(Type 2)烏魚耳石Sr/Ca比時序列變化………………………………71
Fig. 15淡水型(Type 3)烏魚耳石Sr/Ca比時序列變化………………………………72
Fig. 16淡水河流域烏魚隨發育階段變化過程的棲地利用類型…………………….73
Fig. 17烏魚三種初期生活史類型…………………………………………………….76
Fig. 18淡水河烏魚平均(± SD)生殖腺指數(GSI)之月別變化……………………...77
Fig. 19卵黃發生期階段的卵細胞狀態…………………………………………….....78
Fig. 20烏魚的性比在5種鹽度的比例………………………………………………..79
dc.language.isozh-TW
dc.title台灣淡水河流域烏魚的生活史特徵及洄游行為zh_TW
dc.titleLife History Traits and Migratory Behavior of Grey Mullet Mugil cephalus in The Tansui Riveren
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李國添,楊樹森,張至維,沈康寧
dc.subject.keyword烏魚,耳石鍶鈣比,洄游行為,棲地利用,產卵,淡水河,zh_TW
dc.subject.keywordMugil cephalus,otolith Sr/Ca ratio,migratory behavior,habitat use,spawn,Tansui River,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2010-07-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
14.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved