Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46524
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林浩雄
dc.contributor.authorPei-Yu Huangen
dc.contributor.author黃沛愉zh_TW
dc.date.accessioned2021-06-15T05:13:38Z-
dc.date.available2015-07-27
dc.date.copyright2010-07-27
dc.date.issued2010
dc.date.submitted2010-07-22
dc.identifier.citation[1] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, Hai Lu, William J. Schaff, W. K. Metzger, and Sarah Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys., vol. 94, p. 6477, 2003.
[2] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett., vol. 90, 183516, 2007.
[3] Md. Sherajul Islam, A. K. M. Zillur Rahman, Md. A. R. Chowdhury, Md. Rafiqul Islam, and Ashraful G. Bhuiyan, “InxGa1-xN Based Multi Junction Concentrator Solar Cell,” ICECE, p. 578, 2008.
[4] Jeffrey F. Wheeldon, Christopher E. Valdivia, Alex Walker, Gitanjali Kolhatkar, Trevor J. Hall, Karin Hinzer, Denis Masson, Simon Fafard, Abdelatif Jaouad, Artur Turala, Richard Ares, and Vincent Aimez, “AlGaAs Tunnel Junction for High Efficiency Multi-Junction Solar Cells : Simulation and Measurement of Temperature-Dependent Operation,” IEEE, p. 106, 2009.
[5] A. Luque and S. Hegedus, “Handbook of Photovoltaic Science and Engineering,”John Wiley & Sons, 2003.
[6] Aman Dang, “Concentrators: A Review,” Energy Convers. Mgmt, vol. 26, no. 1, p. 11, 1986.
[7] R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of a Nonimaging Fresnel Lens for Solar Concentrators,” Solar Energy, vol. 65, no. 6, p. 379, 1999.
[8] William A. Parkyn and David G. Pelka, “Compact non-imaging lens with totally internally reflecting facets,” SPIE, vol. 1528, 1991.
[9] A. Terao, W. P. Mulligan, S. G. Daroczi, O. C. Pujol, P. J. Verlinden, R. M. Swanson, J. C. Minano, P. Benitz, and J. L. Alvarez, “A mirror-less design for micro-concentrator modules,” Photovoltaic Specialists Conference, p. 1416, 2000.
[10] V. Diaz, J. Alonso, M. Hernandez, J.L. Alvarez, M. Labrador, J. Blen, R. Mohedano, P. Benitez, J. C. Minano, W. Preuss, and A. Gessenhater, “Progress in the manufacture of ultra flat optics for very high concrntration flat panels,” Proceedings of the 29th IEEE PVSC, p. 1580, 2002.
[11] A. Terao, S. G. Daroczi, S. J. Coughlin, W. P.Mulligan, and R. M. Swanson, “New developments on the flat-plate micro-concentrator module,” 3rd world Conference on Photovoltaic Energy Conversion, p. 861, 2003.
[12] Jose L. Alvarez, Javier Cabrera, Vicente Diaz, Carlos Mateos, Nuria Montoya, and Jesus Alonso, “Industrialization of 1000X concentration photovoltaic modules,” Proc. of SPIE, vol. 6197, 61970I, 2006.
[13] Frank L. Pedrotti and Leno S. Pedrotti, “Introduction to Optics,” Prentice Hall, 2nd Edition, 1993.
[14] Jacques E. Ludman, “Holographic solar concentrator,” Applied Optics, vol. 21, no. 17, p. 3507, 1982.
[15] Jan Christoph Goldschmidt, Marius Peters, Armin Bosch, Henning Helmers, Frank Dimroth, Stefan W. Glunz, and Gerhard Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Solar Energy Materials & Solar Cells, vol. 93, p. 176, 2009.
[16] Erwin Delano, “Primary aberration contributions for curved Fresnel surfaces,” J. Opt. Soc. Am., vol. 68, no. 10, 1978.
[17] Cristina Sierra and Alfonso J. Vazquez, “High solar energy concentration with a Fresnel lens,” J. Materials Science, vol. 40, p. 1339, 2004.
[18] R. Leutz and A. Suzuki, “Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators,” Springer, 2001.
[19] Thomas Tag, “The Early Development of Fresnel Lens,” U. S. Lighthouse Society's The Keeper's Log, 2005.
[20] W. T. Welford and R. Winston, “High Collection Nonimaging Optics,” Academic Press, 1989.
[21] P. A. Davies, “Edge-ray principle of nonimaging optics,” J. Optical Society of America, vol. 11, no. 4, 1994.
[22] Tver’yanovich and E. V., “Profiles of solar-engineering fresnel lenses,” Appl. Solar Energy, vol. 19, no. 6, p. 36, 1984.
[23] Ralf Leutz, Akio Suzuki, Atsushi Akisawa, and Takao Kashiwagi, “Developments and designs of solar engineering Fresnel lenses,” Proceedings Symposium on Energy Engineering, vol. 2, p. 759, 2000.
[24] Don A. Gregory and Guolin Peng, “Random facet Fresnel lenses and mirrors,” Optical Engineering, vol. 40, no. 5, p. 713, 2001.
[25] Xiaohui Ning, Joseph O’Gallagher, and Roland Wiston, “Optics of two-stage photovoltaic concentrators with dielectric second stages,” Applied Optics, vol. 26, no. 7, p. 1207, 1987.
[26] Ryu K., Rhee J. G., Park K. M., and Kim J., “Concept and design of modular Fresnel lenses for concentration solar PV system,” Solar Energy, vol. 80, p. 1580, 2006.
[27] A. Luque, G. Sala, and J. C. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Solar Energy Materials and Solar Cells, vol. 51, p. 269, 1998.
[28] Daniel Vázquez-Moliní, Antonio Álvarez Fernández-Balbuena, Eusebio Bernabeu, Javier Muñoz de Luna Clemente, and Alfonso Domingo-Marique, “New concentrator multifocal Fresnel lens for improved uniformity: design and characterization,” Proc. of SPIE, vol. 7407, 740701I, 2009.
[29] Stefka Nikolova Kasarova, Nina Georgieva Sultanova, Christo Dimitrov Ivanov and Ivan Dechev Nikolov, “Analysis of the dispersion of optical plastic materials,” Optical Materials, vol. 29, p. 1481, 2007.
[30] M. Victoria, C. Dom´ınguez, I. Anton, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Optics Express, vol. 17, p. 6487, 2009.
[31] Arthur Davis and Frank Kuhnlenz, “Optical Design Using Fresnel Lenses,” Optic & Photonic, no. 4, 2007.
[32] Michihiro Yamagata, Yasuhiro Tanaka, and Tomohiko Sasano, “Efficiency Simulation for Diamond-Turned Diffractive Lenses,” Jpn. J. Appl. Phys., vol. 37, p. 3695, 1998.
[33] Arthur Davis, “Raytrace assisted analytical formulation of Fresnel lens transmission efficiency,” Proc. of SPIE, vol. 7429, 74290D, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46524-
dc.description.abstract本論文探討平面菲涅爾透鏡應用於聚光型太陽能電池之鏡組設計與特性,主要分為三個倍率設計應用於不同太陽能電池的聚光鏡組。首先我們使用高倍率的菲涅爾透鏡為主光學元件,分析透鏡的焦距限制以及焦距長短對幾何放大倍率、接收率和接收角度的影響,然後使用方型光學導管為二次光學元件來提升系統的接收角度以及光分布均勻度,設計適合應用於III-V族太陽能電池的高倍率聚光系統,此系統於625倍的幾何放大倍率下,工作距離為95 mm的鏡組對於正負1.265度入射的光線,其理想光學效率可達87.5%以上。再來則是討論100倍幾何放大倍率的透鏡,設計適合應用於薄膜太陽能電池的中倍率聚光透鏡,我們將透鏡分成數個環狀區域改變各區域稜鏡聚焦平面的位置來提升接收面的光分布均勻度,此透鏡與接收平面之距離為66 mm,系統對於正負1.265度入射的光線可以達到95%的光學效率。最後我們針對矽太陽能電池設計3倍幾何放大倍率的透鏡,使用寬稜鏡間距的設計來減少尖端圓角造成的光學效率損失,此透鏡之焦距為90 mm,具有正負4度的接收角度。zh_TW
dc.description.abstractThis study analyzes the designs and properties of flat Fresnel lenses applied in refractive concentrator systems. For a high concentration ratio, the Fresnel lens design for III-V multi-junction solar cells uses a 625× geometrical concentration ratio. We use the square light tube as a secondary optical element to increase the acceptance angle and the energy distribution. The working distance is 95 mm, and the ideal optical efficiency achieves 87.5% in ±1.265 incident degrees. Secondly, the lens for the 100× geometrical concentration ratio is applied to thin-film solar cells. We divide the lens into three cyclic zones, and each part has a different focal plane to increase the uniformity of light distribution. The acceptance angle in this medium concentration system is ±1 degree, and the ideal optical efficiency is 95% in ±1.265 degrees with a 66 mm working distance. For the final part which uses a 3× geometrical concentration ratio, the system is designed for applications in silicon solar cells. Considering the loss of optical efficiency caused by the draft angle of the vertical facets and the roundness of vertices, we use wide prism pitches to reduce the fidelity loss of fabrication. This system’s focal length is 90 mm, and the acceptance angle is ±4 degrees.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:13:38Z (GMT). No. of bitstreams: 1
ntu-99-R97941061-1.pdf: 1576179 bytes, checksum: 1f9bdfc646c94eaadffa9fe7884f77ad (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要i
Abstractiii
目錄v
附表索引vii
附圖索引ix
第一章 序論
1.1前言1
1.2聚光型太陽能電池2
1.3菲涅爾透鏡6
1.4論文架構8
第二章 相關理論介紹
2.1幾何光學原理13
2.2非成像光學15
2.3相關名詞介紹16
第三章 高倍率聚光系統設計與模擬分析
3.1菲涅爾透鏡設計21
3.2菲涅爾透鏡模擬與分析23
3.2.1接收率25
3.2.2放大倍率26
3.2.3均勻度29
3.3二次光學元件32
第四章 低倍率聚光系統設計與模擬分析
4.1線性菲涅爾透鏡設計49
4.2線性菲涅爾透鏡模擬與分析51
4.2.1接收角度54
4.2.2接收率55
4.3拔模角與尖端圓角56
第五章 結論
結論65
參考文獻67
dc.language.isozh-TW
dc.subject折射式聚光zh_TW
dc.subject透鏡zh_TW
dc.subject集光器zh_TW
dc.subjectsecondary optical elementen
dc.subjectconcentration ratioen
dc.subjectconcentratoren
dc.subjectFresnel lensen
dc.subjectF-numberen
dc.title菲涅爾透鏡聚光系統設計與模擬研究zh_TW
dc.titleDesigning of Fresnel Lenses for Solar Concentratorsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee毛明華,蔡世貞,王程麒,吳昭文
dc.subject.keyword透鏡,集光器,折射式聚光,zh_TW
dc.subject.keywordFresnel lens,concentrator,concentration ratio,F-number,secondary optical element,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2010-07-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved