Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4651
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡定平(Din Ping Tsai)
dc.contributor.authorYi-Teng Huangen
dc.contributor.author黃奕騰zh_TW
dc.date.accessioned2021-05-14T17:44:40Z-
dc.date.available2017-07-30
dc.date.available2021-05-14T17:44:40Z-
dc.date.copyright2015-07-30
dc.date.issued2015
dc.date.submitted2015-07-27
dc.identifier.citation[1] B. Ung, 'Study of the interaction of surface waves with a metallic nano-slit via the
finite-difference time-domain method,'(2007)
[2] S. Mubeen, J. Lee, W.-r. Lee, N. Singh, G.D. Stucky, M. Moskovits, 'On the
plasmonic photovoltaic,' ACS nano 8, 6066-6073(2014)
[3] H. Fröhlich, H. Pelzer, 'Plasma oscillations and energy loss of charged particles in
solids,' Proceedings of the Physical Society. Section A 68, 525(1955)
[4] S.A. Maier, H.A. Atwater, 'Plasmonics: Localization and guiding of
electromagnetic energy in metal/dielectric structures,' Journal of Applied Physics 98,
011101 (2005)
[5] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, 'The optical properties of metal
nanoparticles: the influence of size, shape, and dielectric environment,' The Journal of
Physical Chemistry B 107, 668-677(2003)
[6] J.P. Kottmann, O.J. Martin, D.R. Smith, S. Schultz, 'Plasmon resonances of silver
nanowires with a nonregular cross section,' Physical Review B 64, 235402(2001)
[7] A. Fujishima, K. Honda, 'Photolysis-decomposition of water at the surface of an
irradiated semiconductor,' Nature 238, 37-38(1972)
[8] D.R. Lide, 'CRC handbook of chemistry and physics,' CRC press,(2004)
[9] A. Kudo, Y. Miseki, 'Heterogeneous photocatalyst materials for water splitting,'
Chemical Society Reviews 38, 253-278(2009)
[10] G. Langouche, J. Soares, J. Stoquert, 'Nuclear methods in semiconductor physics,
'Elsevier,(1992)
[11] D. Wolpert, P. Ampadu, 'Temperature effects in semiconductors, in:Managing
Temperature Effects in Nanoscale Adaptive Systems,' Springer, 15-33(2012)
[12] C.S. Turchi, D.F. Ollis, 'Photocatalytic degradation of organic water contaminants:
mechanisms involving hydroxyl radical attack,' Journal of catalysis 122, 178-192
(1990)
[13] J. Gibson, D. Ingram, M. Symons, M. Townsend, 'Electron resonance studies of
different radical species formed in rigid solutions of hydrogen peroxide after u.-v.irradiation,' Transactions of the Faraday Society 53, 914-920(1957)
[14] S.N. Frank, A.J. Bard, 'Heterogeneous photocatalytic oxidation of cyanide ion in
aqueous solutions at titanium dioxide powder,' Journal of the American Chemical
Society 99, 303-304(1977)
[15] S.N. Frank, A.J. Bard, 'Semiconductor electrodes. Photoassisted oxidations and
photoelectrosynthesis at polycrystalline titanium dioxide electrodes,' Journal of the
American Chemical Society 99, 4667-4675(1977)
[16] T. Sumita, H. Otsuka, H. Kubota, M. Nagata, Y. Honda, R. Miyagawa, T.
Tsurushima, T. Sadoh, 'Ion-beam modification of TiO2 film to multilayered
photocatalyst,' Nuclear Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms 148, 758-761(1999)
[17] T. Zubkov, D. Stahl, T.L. Thompson, D. Panayotov, O. Diwald, J.T. Yates,
'Ultraviolet light-induced hydrophilicity effect on TiO2(110). Dominant role of the
photooxidation of adsorbed hydrocarbons causing wetting by water droplets,' The
Journal of Physical Chemistry B 109, 15454-15462(2005)
[18] J.M. White, J. Szanyi, M.A. Henderson, 'The photon-driven hydrophilicity of
titania: A model study using TiO2(110)and adsorbed trimethyl acetate,' The Journal of
Physical Chemistry B 107, 9029-9033(2003)
[19] K. Hashimoto, H. Irie, A. Fujishima, 'TiO2 photocatalysis: a historical overview
and future prospects,' Japanese journal of applied physics 44, 8269(2005)
[20] D. Bahnemann, 'Photocatalytic water treatment: solar energy applications,' Solar
energy 77, 445-459(2004)
[21] S. Chakrabarti, B.K. Dutta, 'Photocatalytic degradation of model textile dyes in
wastewater using ZnO as semiconductor catalyst,' Journal of hazardous materials 112,
269-278(2004)
[22] D. Reyes-Coronado, G. Rodriguez-Gattorno, M. Espinosa-Pesqueira, C. Cab, R. De
Coss, G. Oskam, 'Phase-pure TiO2 nanoparticles: anatase, brookite and rutile,'
Nanotechnology 19, 145605(2008)
[23] J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu,
'Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts,' Journal of the American Chemical Society 131, 12290-12297(2009)
[24] N. Engheta, R.W. Ziolkowski, 'Metamaterials: physics and engineering
explorations,' John Wiley & Sons,(2006)
[25] A. Tcherniak, J. Ha, S. Dominguez-Medina, L. Slaughter, S. Link, 'Probing a
century old prediction one plasmonic particle at a time,' Nano letters 10, 1398-1404
(2010)
[26] D.B. Ingram, S. Linic, 'Water splitting on composite
plasmonic-metal/semiconductor photoelectrodes: evidence for selective
plasmon-induced formation of charge carriers near the semiconductor surface,' Journal
of the American Chemical Society 133, 5202-5205(2011)
[27] M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, 'Photodetection with active
optical antennas,' Science 332, 702-704(2011)
[28] H. Ditlbacher, J. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner,
F. Aussenegg, 'Fluorescence imaging of surface plasmon fields,' Applied physics letters
80, 404-406(2002)
[29] I. Thomann, B.A. Pinaud, Z. Chen, B.M. Clemens, T.F. Jaramillo, M.L.
Brongersma, 'Plasmon enhanced solar-to-fuel energy conversion,' Nano letters 11,
3440-3446(2011)
[30] Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, H. Misawa, 'Plasmon-Assisted
Photocurrent Generation from Visible to Near-Infrared Wavelength Using a
Au-Nanorods/TiO2 Electrode,' Journal of Physical Chemistry Letters 1, 2031-2036
(2010)
[31] P. Wang, B. Huang, Z. Lou, X. Zhang, X. Qin, Y. Dai, Z. Zheng, X. Wang,
'Synthesis of highly efficient Ag@ AgCl plasmonic photocatalysts with various
structures,' Chemistry-a European Journal 16, 538-544(2010)
[32] J. Li, S.K. Cushing, P. Zheng, F. Meng, D. Chu, N. Wu, 'Plasmon-induced
photonic and energy-transfer enhancement of solar water splitting by a hematite
nanorod array,' Nature Communications 4,(2013)
[33] A. Imanishi, E. Tsuji, Y. Nakato, 'Dependence of the work function of TiO2
(rutile) on crystal faces, studied by a scanning auger microprobe,' The Journal of Physical Chemistry C 111, 2128-2132(2007)
[34] C. Clavero, 'Plasmon-induced hot-electron generation at nanoparticle/metal-oxide
interfaces for photovoltaic and photocatalytic devices,' Nature Photonics 8, 95-103
(2014)
[35] E. Kazuma, N. Sakai, T. Tatsuma, 'Nanoimaging of localized plasmon-induced
charge separation,' Chem. Commun. 47, 5777-5779(2011)
[36] X. Zhang, Y.L. Chen, R.-S. Liu, D.P. Tsai, 'Plasmonic photocatalysis,' Reports on
Progress in Physics 76, 046401(2013)
[37] M. Haines, M. Wei, F. Beg, R. Stephens, 'Hot-electron temperature and laser-light
absorption in fast ignition,' Physical review letters 102, 045008(2009)
[38] H.M. Chen, C.K. Chen, C.-J. Chen, L.-C. Cheng, P.C. Wu, B.H. Cheng, Y.Z. Ho,
M.L. Tseng, Y.-Y. Hsu, T.-S. Chan, 'Plasmon inducing effects for enhanced
photoelectrochemical water splitting: X-ray absorption approach to electronic
structures,' ACS nano 6, 7362-7372(2012)
[39] C.-P. Lin, H. Chen, A. Nakaruk, P. Koshy, C. Sorrell, 'Effect of Annealing
Temperature on the Photocatalytic Activity of TiO2 Thin Films,' Energy Procedia 34,
627-636(2013)
[40] K. Thamaphat, P. Limsuwan, B. Ngotawornchai, 'Phase characterization of TiO2
powder by XRD and TEM,' Kasetsart J.(Nat. Sci.) 42, 357-361(2008)
[41] S.Y. Chou, P.R. Krauss, P.J. Renstrom, 'Nanoimprint lithography,' Journal of
Vacuum Science & Technology B 14, 4129-4133(1996)
[42] R. Ganesan, S.S. Dinachali, S.H. Lim, M. Saifullah, W.T. Chong, A.H. Lim, J.J.
Yong, E. San Thian, C. He, H.Y. Low, 'Direct nanoimprint lithography of Al2O3 using a
chelated monomer-based precursor,' Nanotechnology 23, 315304(2012)
[43] Y.K. Lee, C.H. Jung, J. Park, H. Seo, G.A. Somorjai, J.Y. Park, 'Surface
Plasmon-Driven Hot Electron Flow Probed with Metal-Semiconductor Nanodiodes,'Nano Letters 11, 4251-4255(2011)
[44] G.V. Eleftheriades, K.G. Balmain, 'Negative-refraction metamaterials: fundamental
principles and applications,' John Wiley & Sons,(2005)
[45] D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, D.G. Fernig, 'A rapid method to estimate the concentration of citrate capped silver nanoparticles from
UV-visible light spectra', Analyst 139, 4855-4861(2014)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4651-
dc.description.abstract在能源議題日益重要的今日,乾淨、可重複利用的綠色能源一直是科學家積極追尋的目標,而其中最吸引注意的也許就是「氫能源」了,氫氣是能量密度極高的氣體,其進行氧化反應後可以釋放出大量的能量,有效的將化學能轉換成電能或其他型式的能量,是燃料電池中最常使用的燃料,同時其反應後的產物只有水,沒有額外的廢氣產生,十分符合綠色能源的需求,因此科學家一直透過各種方法希望有效地獲得氫氣,目前商業化的方法主要有利用藻類或微生物的生物產氫法、石化燃料產氫法、高溫高壓下的熱化學產氫法、電解水產氫法等。
近年來,由於光觸媒(photocatalyst)合成技術的突破,利用太陽能源產氫的光電化學電池(photoelectrochemical cell) 逐漸受到關注,這些光觸媒主要成分都是半導體,其基本原理是透過半導體吸收光能後使得價帶的電子躍遷至導帶,若導帶的電子能擴散到半導體表面,則可以和水溶液中的氫離子反應產生氫氣。此方法的優點是不需額外施加外加的能量,僅需照射太陽光就可以產生氫氣;然缺點是大部分用作觸媒的半導體具有較大的能隙,通常需要吸收紫外光才能有效使其電子電洞對分離,這表示僅有7%左右的太陽能量可以被有效使用,而太陽中佔大多數的可見及紅外波段卻被浪費了。本研究的初衷即是希望透過表面電漿子(surface plasmon)的共振效應,將光觸媒能使用的能量波段延伸至可見和紅外光。
本研究選用最為人熟知的二氧化鈦作為光觸媒,並利用簡單的濺鍍或蒸鍍方法在其表面製造奈米等級的金屬顆粒,這些奈米金屬粒子受到外加電磁波的驅動,在某些特定波段會出現表面電子集體震盪的情形,即形成所謂的表面電漿子,在此共振情形下,會有相當大量的熱電子(hot electrons)注入半導體中,因而大幅增加產氫效率。使用濺鍍或蒸鍍方法製造的奈米金屬粒子,粒子大小不一,並且是隨機的分布在二氧化鈦表面,其共振的波長是一個寬頻的分布,能利用太陽光中大多數的光譜能量,這也是大多數文獻中所能達到的效果;然而,我們想進一步比較一個只有某些特定波長的規則結構,是不是有可能透過增強其在這些特定波長的吸收強度,進而超越隨機金屬粒子的產氫效果,同時我們亦可以透過模擬軟體預測在何種結構下,會在特定的波長產生電漿子共振的效應,這也是在一般的隨機結構中難以達到的。因此我們在本研究中也引入了奈米壓印的技術,在二氧化鈦表面上製作大面積的規則奈米柱結構,透過照射不同光源下的光電流量測,我們可以比較規則結構和隨機粒子的產氫效率優劣,相信將來有機會作為未來增益結構的參考。
zh_TW
dc.description.abstractNowadays, energy issues have become more and more important. Scientists keep searching for clear and reusable energy sources. Undoubtedly, “hydrogen energy” is the most attractive one among them. Hydrogen is a gas with high energy density. It will generate a great energy after Reduction-Oxidation and efficiently transforms the
chemical energy into electric energy or energies with different forms. Besides, the only product of hydrogen after redox is water. No waste gas and no pollutant. Until now, the most common technologies acquiring hydrogen are biological hydrogen production,
thermal chemical production, water electrolysis and so on. Electron-hole pairs are generated after these semiconductors absorb the sun-light. Theses free carriers will diffuse onto the surface, and electrons may react with hydrogen ions in the water and reduce them into hydrogen gas. However, most semiconductors in these cells have large band gaps. Only UV light can excite electrons from valence band to conduction band. However, UV light only take up about 7% in sun light, which is relatively small compared with visible light and infrared.
In recent years, photocatalyst synthesis makes great strides. photocelectrochemical Cells therefore attracts more attraction. These cells are made of semiconductors. The principle for hydrogen production behind them is very simple.
Our object is to extend the working wavelength of these semiconductors from UV light to visible light and infrared by the “surface plasmon resonance” effect, which comes from the collective oscillation of electrons induced by the electromagnetic waves. TiO2 is the most common semiconductors used for photocatalyst. In our research, we try to fabricate metallic nanostructures by simple physical deposition methods---evaporation and sputtering on the surface of TiO2. Then we measure the photocurrents of sample under illumination. If the surface plasmon resonance happens on certain wavelength, there will be a great amount of “hot electrons” injected into the semiconductor. A great enhancement of photocurrents will be expected at this situation. Another point in our research is to fabricate regular nanostructures, which can only have single resonance wavelength. We want to know if these regular structures can generate more photocurrents than random structures make. Although random structures may have a broad-band absorption, regular structures usually have a relatively high absorption peaks at resonance wavelength and may have better effects on current generation. We use “nanoimprint lithography” to fabricate regular structures with a large area. Furthermore, we can predict the resonance wavelength of these structures by simulation, which is almost impossible for random structures. We believe that we demonstrate a possible way to increase the efficiency of photocatalysis.
en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:44:40Z (GMT). No. of bitstreams: 1
ntu-104-R02245004-1.pdf: 5050930 bytes, checksum: e018d4111d89f86afc890246c2e13875 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsChapter 1 緒論............................................................................................................1
1.1 前言................................................................................................................1
1.2 杜德-羅倫茲模型...........................................................................................1
1.3 表面電漿基本原理........................................................................................4
1.4 侷域表面電漿共振原理..............................................................................11
1.5 半導體光觸媒簡介......................................................................................13
1.6 表面電漿與光觸媒交互作用機制..............................................................17
1.7 研究目的......................................................................................................26
Chapter 2 實驗架構與研究方法.............................................................................28
2.1 前言..............................................................................................................28
2.2 光水解反應系統..........................................................................................28
2.3 二氧化鈦及金屬薄膜製備..........................................................................32
2.4 規則金屬柱製備..........................................................................................36
2.4.1 奈米壓印簡介.....................................................................................36
2.4.2 實驗步驟.............................................................................................38
2.5 模擬計算方法..............................................................................................41
Chapter 3 實驗結果與分析.....................................................................................43
3.1 前言..............................................................................................................43
3.2 二氧化鈦厚度之影響..................................................................................43
3.3 金厚度之影響..............................................................................................47
3.4 退火溫度之影響..........................................................................................50
3.5 不同金屬之影響..........................................................................................53
3.6 薄膜製備方法之影響..................................................................................57
3.7 規則奈米柱..................................................................................................60
3.7.1 設計.....................................................................................................60
3.7.2 實驗步驟.............................................................................................63
Chapter 4 結論與展望.............................................................................................67
參考文獻.........................................................................................................................69
dc.language.isozh-TW
dc.subject二氧化鈦zh_TW
dc.subject表面電將共振zh_TW
dc.subject熱電子zh_TW
dc.subject奈米結構zh_TW
dc.subject光觸媒zh_TW
dc.subjectsurface plasmon resonanceen
dc.subjectnanostructuresen
dc.subjectnanoparticlesen
dc.subjectphotocatalysisen
dc.subjecthot elctronsen
dc.title金屬奈米結構增益表面電漿子於光水解反應之研究zh_TW
dc.titlePlasmon-Induced Water-Splitting Enhanced by Metallic Nanostructuresen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張允崇(Yun-Chorng Chang),王智明(Chih-Ming Wang)
dc.subject.keyword表面電將共振,熱電子,奈米結構,光觸媒,二氧化鈦,zh_TW
dc.subject.keywordsurface plasmon resonance,photocatalysis,nanoparticles,nanostructures,hot elctrons,en
dc.relation.page73
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-07-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf4.93 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved