Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46507
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor章浩宏
dc.contributor.authorLi-Ling Kuoen
dc.contributor.author郭俐伶zh_TW
dc.date.accessioned2021-06-15T05:12:42Z-
dc.date.available2010-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-07-23
dc.identifier.citationAbrahamsson, I. and T. Berglundh (2006). 'Tissue characteristics at microthreaded implants: an experimental study in dogs.' Clin Implant Dent Relat Res 8(3): 107-113.
Abu-Hammad, O., A. Khraisat, et al. (2007). 'Effect of dental implant cross-sectional design on cortical bone structure using finite element analysis.' Clin Implant Dent Relat Res 9(4): 217-221.
Abuhussein, H., G. Pagni, et al. (2010). 'The effect of thread pattern upon implant osseointegration.' Clin Oral Implants Res 21(2): 129-136.
Albrektsson, T., P. I. Branemark, et al. (1981). 'Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man.' Acta Orthop Scand 52(2): 155-170.
Albrektsson, T., A. R. Eriksson, et al. (1993). 'Histologic investigations on 33 retrieved Nobelpharma implants.' Clin Mater 12(1): 1-9.
Amler, M. H. (1969). 'The time sequence of tissue regeneration in human extraction wounds.' Oral Surg Oral Med Oral Pathol 27(3): 309-318.
Andersson, B. (1995). 'Implants for single-tooth replacement. A clinical and experimental study on the Branemark CeraOne System.' Swed Dent J Suppl 108: 1-41.
Andersson, B., P. Odman, et al. (1995). 'Single-tooth restorations supported by osseointegrated implants: results and experiences from a prospective study after 2 to 3 years.' Int J Oral Maxillofac Implants 10(6): 702-711.
Baggi, L., I. Cappelloni, et al. (2008). 'The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis.' J Prosthet Dent 100(6): 422-431.
Barbier, L., J. Vander Sloten, et al. (1998). 'Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog.' J Oral Rehabil 25(11): 847-858.
Boggan, R. S., J. T. Strong, et al. (1999). 'Influence of hex geometry and prosthetic table width on static and fatigue strength of dental implants.' J Prosthet Dent 82(4): 436-440.
Bolind, P. K., C. B. Johansson, et al. (2005). 'A descriptive study on retrieved non-threaded and threaded implant designs.' Clin Oral Implants Res 16(4): 447-455.
Bozkaya, D., S. Muftu, et al. (2004). 'Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis.' J Prosthet Dent 92(6): 523-530.
Branemark, P. I., R. Adell, et al. (1969). 'Intra-osseous anchorage of dental prostheses. I. Experimental studies.' Scand J Plast Reconstr Surg 3(2): 81-100.
Brunski, J. B. (1999). 'In vivo bone response to biomechanical loading at the bone/dental-implant interface.' Adv Dent Res 13: 99-119.
Bumgardner, J. D., J. G. Boring, et al. (2000). 'Preliminary evaluation of a new dental implant design in canine models.' Implant Dent 9(3): 252-260.
Cawley, P., B. Pavlakovic, et al. (1998). 'The design of a vibration transducer to monitor the integrity of dental implants.' Proc Inst Mech Eng H 212(4): 265-272.
Chun, H. J., S. Y. Cheong, et al. (2002). 'Evaluation of design parameters of osseointegrated dental implants using finite element analysis.' J Oral Rehabil 29(6): 565-574.
Chung, S. H., S. J. Heo, et al. (2008). 'Effects of implant geometry and surface treatment on osseointegration after functional loading: a dog study.' J Oral Rehabil 35(3): 229-236.
Duyck, J., H. J. Ronold, et al. (2001). 'The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study.' Clin Oral Implants Res 12(3): 207-218.
Fini, M., G. Giavaresi, et al. (2004). 'Current trends in the enhancement of biomaterial osteointegration: biophysical stimulation.' Int J Artif Organs 27(8): 681-690.
Frost, H. M. (1990). 'Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff's law: the bone modeling problem.' Anat Rec 226(4): 403-413.
Fugazzotto, P. A. (2005). 'Success and failure rates of osseointegrated implants in function in regenerated bone for 72 to 133 months.' Int J Oral Maxillofac Implants 20(1): 77-83.
Geng, J. P., Q. S. Ma, et al. (2004). 'Finite element analysis of four thread-form configurations in a stepped screw implant.' J Oral Rehabil 31(3): 233-239.
Geng, J. P., D. W. Xu, et al. (2004). 'Finite element analysis of an osseointegrated stepped screw dental implant.' J Oral Implantol 30(4): 223-233.
Goodacre, C. J., G. Bernal, et al. (2003). 'Clinical complications with implants and implant prostheses.' J Prosthet Dent 90(2): 121-132.
Haas, R., N. Mensdorff-Pouilly, et al. (1995). 'Branemark single tooth implants: a preliminary report of 76 implants.' J Prosthet Dent 73(3): 274-279.
Hanggi, M. P., D. C. Hanggi, et al. (2005). 'Crestal bone changes around titanium implants. Part I: A retrospective radiographic evaluation in humans comparing two non-submerged implant designs with different machined collar lengths.' J Periodontol 76(5): 791-802.
Hansson, S. (1999). 'The implant neck: smooth or provided with retention elements. A biomechanical approach.' Clin Oral Implants Res 10(5): 394-405.
Hansson, S. and M. Werke (2003). 'The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study.' J Biomech 36(9): 1247-1258.
Hermann, J. S., J. D. Schoolfield, et al. (2001). 'Crestal bone changes around titanium implants: a methodologic study comparing linear radiographic with histometric measurements.' Int J Oral Maxillofac Implants 16(4): 475-485.
Hermann, J. S., J. D. Schoolfield, et al. (2001). 'Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged implants in the canine mandible.' J Periodontol 72(10): 1372-1383.
Huwiler, M. A., B. E. Pjetursson, et al. (2007). 'Resonance frequency analysis in relation to jawbone characteristics and during early healing of implant installation.' Clin Oral Implants Res 18(3): 275-280.
Jacobs, R., A. Schotte, et al. (1992). 'Posterior jaw bone resorption in osseointegrated implant-supported overdentures.' Clin Oral Implants Res 3(2): 63-70.
Jones, G. M., W. Barry, et al. (1964). 'Dynamics of the Semicircular Canals Compared in Yaw, Pitch and Roll.' Aerosp Med 35: 984-989.
Jung, Y. C., C. H. Han, et al. (1996). 'A 1-year radiographic evaluation of marginal bone around dental implants.' Int J Oral Maxillofac Implants 11(6): 811-818.
Ko, C. C., D. H. Kohn, et al. (1992). 'Micromechanics of implant/tissue interfaces.' J Oral Implantol 18(3): 220-230.
Kong, L., B. L. Liu, et al. (2006). '[Optimized thread pitch design and stress analysis of the cylinder screwed dental implant].' Hua Xi Kou Qiang Yi Xue Za Zhi 24(6): 509-512, 515.
Lee, D. W., Y. S. Choi, et al. (2007). 'Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study.' Clin Oral Implants Res 18(4): 465-470.
Lemons, J. E., R. M. Meffert, et al. (1993). 'HA-coated root-form implants--is there cause for concern?' Dent Implantol Update 4(5): 37-42.
Liang, D. K., J. H. Wang, et al. (2002). '[The influence of the screw thread and the height of constraints on the stress distribution around dental implants by using three-dimensional finite element analysis].' Shanghai Kou Qiang Yi Xue 11(4): 324-326.
Lowet, G. and G. Van der Perre (1996). 'Ultrasound velocity measurement in long bones: measurement method and simulation of ultrasound wave propagation.' J Biomech 29(10): 1255-1262.
Ma, P., H. C. Liu, et al. (2007). '[Influence of helix angle and density on primary stability of immediately loaded dental implants: three-dimensional finite element analysis].' Zhonghua Kou Qiang Yi Xue Za Zhi 42(10): 618-621.
Mailath, G., B. Stoiber, et al. (1989). '[Bone resorption at the entry of osseointegrated implants--a biomechanical phenomenon. Finite element study].' Z Stomatol 86(4): 207-216.
Meijer, H. J., F. J. Starmans, et al. (1993). 'A three-dimensional, finite-element analysis of bone around dental implants in an edentulous human mandible.' Arch Oral Biol 38(6): 491-496.
Meijer, H. J., F. J. Starmans, et al. (1994). 'A three-dimensional finite element study on two versus four implants in an edentulous mandible.' Int J Prosthodont 7(3): 271-279.
Meredith, N., D. Alleyne, et al. (1996). 'Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis.' Clin Oral Implants Res 7(3): 261-267.
Meredith, N., K. Book, et al. (1997). 'Resonance frequency measurements of implant stability in vivo. A cross-sectional and longitudinal study of resonance frequency measurements on implants in the edentulous and partially dentate maxilla.' Clin Oral Implants Res 8(3): 226-233.
Misch, C. E., M. W. Bidez, et al. (2001). 'A bioengineered implant for a predetermined bone cellular response to loading forces. A literature review and case report.' J Periodontol 72(9): 1276-1286.
Motoyoshi, M., S. Yano, et al. (2005). 'Biomechanical effect of abutment on stability of orthodontic mini-implant. A finite element analysis.' Clin Oral Implants Res 16(4): 480-485.
Palmer, R. M., P. J. Palmer, et al. (2000). 'A 5-year prospective study of Astra single tooth implants.' Clin Oral Implants Res 11(2): 179-182.
Pastrav, L. C., S. V. Jaecques, et al. (2009). 'In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses.' J Orthop Surg Res 4: 10.
Pattijn, V., C. Van Lierde, et al. (2006). 'The resonance frequencies and mode shapes of dental implants: Rigid body behaviour versus bending behaviour. A numerical approach.' J Biomech 39(5): 939-947.
Pietrokovski, J. (1967). 'Extraction wound healing after tooth fracture in rats.' J Dent Res 46(1): 232-240.
Prendergast, P. J. and R. Huiskes (1996). 'Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis.' J Biomech Eng 118(2): 240-246.
Puchades-Roman, L., R. M. Palmer, et al. (2000). 'A clinical, radiographic, and microbiologic comparison of Astra Tech and Branemark single tooth implants.' Clin Implant Dent Relat Res 2(2): 78-84.
Quirynen, M., I. Naert, et al. (1992). 'Fixture design and overload influence marginal bone loss and fixture success in the Branemark system.' Clin Oral Implants Res 3(3): 104-111.
Roberts, W. E., R. K. Smith, et al. (1984). 'Osseous adaptation to continuous loading of rigid endosseous implants.' Am J Orthod 86(2): 95-111.
Salvi, G. E., M. M. Furst, et al. (2008). 'One-year bacterial colonization patterns of Staphylococcus aureus and other bacteria at implants and adjacent teeth.' Clin Oral Implants Res 19(3): 242-248.
Schrotenboer, J., Y. P. Tsao, et al. (2008). 'Effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis.' J Periodontol 79(11): 2166-2172.
Steigenga, J., K. Al-Shammari, et al. (2004). 'Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits.' J Periodontol 75(9): 1233-1241.
Steigenga, J. T., K. F. al-Shammari, et al. (2003). 'Dental implant design and its relationship to long-term implant success.' Implant Dent 12(4): 306-317.
Tozum, T. F., I. Turkyilmaz, et al. (2007). 'Analysis of the potential association of implant stability, laboratory, and image-based measures used to assess osteotomy sites: early versus delayed loading.' J Periodontol 78(9): 1675-1682.
Vaillancourt, H., R. M. Pilliar, et al. (1995). 'Finite element analysis of crestal bone loss around porous-coated dental implants.' J Appl Biomater 6(4): 267-282.
Valderrama, P., T. W. Oates, et al. (2007). 'Evaluation of two different resonance frequency devices to detect implant stability: a clinical trial.' J Periodontol 78(2): 262-272.
Misch, C.E., Strong, T. & Bidez, M.W. (2008) Scientific rationale for dental implant design. In: Misch, C.E., ed. Contemporary Implant Dentistry. 3 edition, 200–229. St Louis: Mosby.
Samiotis A, Batniji M, Lopez L, Steveling H. Clinical monitoring with RFA of Astra
implants. Poster J Dent Oral Med 2003;5:214–8. Poster 203.
ISO 1942-5, Dental vocabulary ─ Part 5: Terms associated with testing
ISO10993-2, Biological evaluation of medical devices ─ Part 2: Animal welfare requirements
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46507-
dc.description.abstract近年來植體表面處理技術的進步,使得人工植牙之癒合時間縮短,成功率也大幅提高,但再完美之表面處理,仍需要一定的癒合時間,若要使植體之初期穩定度提高,植體局部構型,如螺紋設計之改良,或可能扮演一定的角色,因此局部構型及表面處理與對植體之初期穩定之提供及後續骨整合之效果可能扮演一定的角色。
本研究之目的在評估不同螺紋設計,但同樣以SLA酸蝕處理表面之人工牙根其初步穩定度及對後續骨整合之影響。
其方法為以複合表面螺紋構型之人工牙根及傳統螺纹構型之人工牙根以動物實驗模式進行比較,3隻Beagle犬,於下顎牙齒拔除(P2,P3,P4)後,植入複合表面螺紋人工牙根5根,並以傳統螺纹構型人工牙根3根作為對照組進行比較, 於植體植入前後進行臨床評估,共振頻率測量及影像紀錄等之評估,並於植入後之四周,八週及十二週等時間點犧牲動物,進行組織標本觀察。
結果顯示 具複合表面螺紋構型之人工牙根 在植體植入時有較大之旋入扭力,術後當次以共振頻率測量實驗組與對照組間,實驗組略優於對照組,但並未達到統計上的顯著。但術後之觀察 複合表面螺纹構型確有較高植體牙周炎之比率,甚至有植體脫落之情況 (2根,佔實驗組13.33%), 惟就組織學及病理切片之結果來看, 兩者於骨整合及骨接觸並未呈現統計上之差異。
以現有之結果而言 兩種植體之存活率均可達 85 % 以上,改良型之植體之表面螺纹構型或可能有較高之初期穩定度,但並未能加速骨整合之效果, 其原因可能與鑽針之設計, 置備之植體創口大小及過大之應力集中導致後續骨吸收及牙冠周圍炎有關。
結論:複合螺纹構型未必能提供未能加速骨整合之效果,對於相匹配之鑽針之設計應更謹慎,才能充分呈現複合式螺紋設計之優點。
zh_TW
dc.description.abstractObjectives
Surface design and treatment on dental implant had been progressed rapidly, which caused reduction of healing time and raise of successful rate. Successful treatment with dental implant depends on a direct contact between dental implant and surrounding bone, which is known as osseointegration. Since the initial stability of implant was related to osseointegration, the geometric design on implant surface may play an important role in improving of initial stability of implant thus enhancing the osseointegration.
The purpose of this study is to evaluate the influence of modified thread design on osteointergration.

Materials and methods
Two different implant thread designs, the simplex type (ITI), and complex type (Biodenta) with same length (8mm) , diameter(3.3mm), surface treatment (SLA), were used in the present study. A total of 24 implants were inserted into the edentulous ridge in oral cavity of 3dogs and assigned into three healing periods, 4weeks, 8weeks and 12weeks. Each dog received implantation of 8 implant, which included 5 implants of complex type (Biodenta) and 3implants of simplex type(ITI). The assessments of implants are including clinical evaluation, resonance frequency analysis (RFA), and photographic record. And the dogs were sacrificed at the time interval of 4, 8,12 weeks after implantation for further histological analysis.

Results
It showed that implants of complex thread design had greater torque value during insertion. There was no statistically difference in initial stability, even though the ISQ value of implant with complex thread design was higher than simplex group. Furthermore there were two implants of complex group dislodged spontaneously leading to lower initial survival rate in complex group (86.67% in simplex group vs. 100% in complex group, p<0.05). However, there was no statistically difference in osseointegration and bone-implant-contact among two groups by means of histological analysis.
In the present study, the survival rate of either group was above 85%. Although superior initial stability in complex type implant group, the outcome of osseointegration was not as good as expecting. It seems that factors rather than design of implant such as the diameter of the drills, stress distribution around the implant preparation site might lead to fair osseointegration result. While a new complex implant system development, it seems be cautious on the design and stress distribution around the implant preparation site is warranted.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:12:42Z (GMT). No. of bitstreams: 1
ntu-99-R97422027-1.pdf: 1875158 bytes, checksum: cdcb7470c890e23b46d4f0a19fcd9a66 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要……………………………………………………………………………vi
英文摘要……………………………………………………………………………viii
第一章 序論及文獻回顧……………………………………………………………1
1.1 人工植體之概觀 …………………………………………………………………1
1.1.1 人工植體的發展及應用 ………………………………………………………1
1.1.2 人工植體與骨整合 ……………………………………………………………1
1.1.3 人工植體表面設計與骨整合 …………………………………………………2
1.2 人工植體之螺紋設計……………………………………………………………3
1.2.1 螺紋形狀類別 …………………………………………………………………3
1.2.2 螺紋與應力 …………………………………………………………………3
1.2.3 螺紋與適當的乘載力 …………………………………………………………4
1.2.4 螺紋距離 ……………………………………………………………………6
1.2.5 螺紋螺旋角度………………………………………………………………7
1.2.6 螺紋深度與寬度……………………………………………………………8
1.2.7 人工植體齒頸部……………………………………………………………8
1.2.8 人工植體齒頸部的設計……………………………………………………9
1.2.9 細螺紋………………………………………………………………………10
1.3 人工植體之應力分布 …………………………………………………………11
1.4 實驗目的………………………………………………………………………12
第二章 材料與方法…………………………………………………………………13
2.1 實驗樣本………………………………………………………………………13
2.2 研究材料與分組 ………………………………………………………………13
2.2.1 植體選擇 ……………………………………………………………………13
2.2.2 植體差異 ………………………………………………………………………14
2.3. 手術過程與術後照顧 …………………………………………………………14
2.4. 非侵入性觀察技術 ……………………………………………………………15
2.4.1. 臨床觀察 …………………………………………………………………15
2.4.2. 共振頻率測定 ……………………………………………………………16
2.5. 動物犧牲與取得標本 …………………………………………………………17
2.6. 標本製備與染色 ………………………………………………………………17
2.7 統計分析 ………………………………………………………………………18
第三章 結果…………………………………………………………………………19
3.1 植體穩定商數(ISQ)…………………………………………………………19
3.1.1 初期穩定度…………………………………………………………………19
3.1.2 四周穩定度…………………………………………………………………19
3.1.3 八周穩定度…………………………………………………………………20
3.1.4 十二周穩定度………………………………………………………………20
3.2 骨與植體表面接觸百分比(BIC)……………………………………………20
3.3 存活率 …………………………………………………………………………21
3.4 組織切片觀察…………………………………………………………………21
第四章 討論…………………………………………………………………………23
4.1 植體穩定商數(ISQ)之探討…………………………………………………23
4.2 骨與植體表面接觸百分比(BIC)之探討……………………………………25
4.3 存活率 …………………………………………………………………………27
4.4 組織切片觀察之探討 …………………………………………………………27
4.5實驗設計與方法之探討…………………………………………………………28
第五章 結論…………………………………………………………………………30
第六章 附表…………………………………………………………………………32
參考文獻 ……………………………………………………………………………47
第七章 附圖…………………………………………………………………………53
dc.language.isozh-TW
dc.subject共振頻率zh_TW
dc.subject植體穩定商數zh_TW
dc.subject骨整合zh_TW
dc.subject植體設計zh_TW
dc.subject複合式螺紋zh_TW
dc.subjectISQen
dc.subjectFEAen
dc.subjectcomplex threaden
dc.subjectimplant designen
dc.subjectosteointegrationen
dc.title改良螺紋設計之植體對骨整合影響之評估zh_TW
dc.titleInfluence of modified thread design of dental implant on osteointergrationen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor林俊彬
dc.contributor.oralexamcommittee郭英雄
dc.subject.keyword植體穩定商數,骨整合,植體設計,複合式螺紋,共振頻率,zh_TW
dc.subject.keywordISQ,osteointegration,implant design,complex thread,FEA,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2010-07-23
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved