請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46495完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡振國(Jenn-Gwo Hwu) | |
| dc.contributor.author | Yu-Jen Lee | en |
| dc.contributor.author | 李祐任 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:12:04Z | - |
| dc.date.available | 2010-07-26 | |
| dc.date.copyright | 2010-07-26 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-22 | |
| dc.identifier.citation | [1] Nobel Prize in Physics 1956. [Online].
Available: http://nobelprize.org/nobel_prizes/physics/laureates/1956/press.html [2] D. Kahng and M. M. Atalla, 'Silicon-silicon dioxide field induced surface devices,' in IRE-AIEE Solid-state Device Res. Conf., (Carnegie Inst. of Technol., Pittsburgh, PA), 1960. [3] Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3rd edition. New York: McGraw-Hill, 2003. [4] G. E. Moore, 'Progress in digital integrated electronics,' in IEDM Tech. Dig., 1975, pp. 11-13. [5] The International Technology Roadmap for Semiconductors, 2009. [Online]. Available: http://www.itrs.net [6] J. H. Stathis and D. J. DiMaria, 'Reliability projection for ultra-thin oxides at low voltage,' in IEDM Tech. Dig., 1998, pp. 167-170. [7] D. A. Buchanan, 'Scaling the gate dielectric: materials, integration, and realibility,' IBM J. Res. & Dev. Vol. 43, pp. 245-264, 1999. [8] Y. Y. Fan, R. E. Nieh, J. C. Lee, G. Lucovsky, G. A. Brown, L. F. Register, and S. K. Banerjee, 'Voltage- and temperature-dependent gate capacitance and current model: application to ZrO2 n-channel MOS capacitor,' IEEE Trans. Electron Devices, Vol. 49, No. 11, pp. 1969-1978, Nov. 2002. [9] W. J. Zhu, T. P. Ma, T. Tamagawa, J. Kim, and Y. Di, 'Current transport in metal/hafnium oxide/silicon structure,' IEEE Electron Device Lett., Vol. 23, No. 2, pp. 97-99, Feb. 2002. [10] B. J. Kailath, A. DasGupta, and N. DasGupta, 'Electrical and reliability characteristics of MOS devices with ultrathin SiO2 Grown in nitric acid solutions,' IEEE Trans. on Device and Materials Reliability, Vol. 7, No. 4, pp. 602-610, Dec. 2007. [11] W. B. Kim, Asuha, Taketoshi Matsumoto, and Hikaru Kobayash, 'Ultrathin SiO2 layer on atomically flat Si (111) surfaces with excellent electrical characteristics formed by nitric acid oxidation method,' Appl. Phys. Lett., Vol. 93, No. 7, 072101, 2008. [12] Asuha, T. Kobayashi, O. Maida, M. Inoue, M. Takahashi, Y. Todokoro, and H. Kobayashi, 'Ultrathin silicon dioxide layers with a low leakage current density formed by chemical oxidation of Si,' Appl. Phys. Lett., Vol. 81, No. 18, 3410, Oct. 2002. [13] H. Kobayashi, Asuha, O. Maida, M. Takahashi, and H. Iwasa, 'Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density,' J. Appl. Phys., Vol. 94, No.11, 7328, Dec. 2003. [14] Asuha, Y. L. Liu, O. Maida, M. Takahashi, and H. Kobayashi, 'Postoxidation annealing treatments to improve Si/ultrathin SiO2 characteristics formed by nitric acid oxidation,' J. Electrochem. Soc., Vol. 151, Issue 12, pp. G824-G828, 2004. [15] M. Grecea, C. Rotaru, N. Nastase, and G. Craciun, 'Physical properties of SiO2 thin films obtained by anodic oxidation,' J. Mol. Struct., Vol. 480-481, pp. 607-610, 1999. [16] G. C. Jain, A. Prasad, and B. C. Chakravarty, 'On the mechanism of the anodic oxidation of Si at constant voltage,' J. Electrochem. Soc., Vol. 126, No. 1, pp. 89-92, Jan. 1979. [17] C. C. Ting, Y. H. Shih, and J. G. Hwu, 'Ultra low leakage characteristics of ultra-thin gate oxides (~3nm) prepared by anodization followed by high-temperature annealing,' IEEE Trans. Electron Devices, Vol. 49, No. 1, pp. 179-181, Jan. 2002. [18] K. J. Yang and C. Hu, 'MOS capacitance measurements for high-leakage thin dielectrics,' IEEE Trans. Electron Devices, Vol. 46, No. 7, pp. 1500-1501, Jul. 1999. [19] N. W. Ashcroft and N. D. Mermin, Solid State Physics. New York: Holt, Rinerhard, and Winston, 1976. [20] C. H. Tseng, 'Germanium channel MOSFETs and strain-induced effects on silicon MOS capacitor,' Master Thesis, GIEE, NTU, p. 69, 2006. [21] J. Y. Yen and J. G. Hwu, 'Enhancement of silicon oxidation rate due to tensile mechanical stress,' Appl. Phys. Lett., Vol. 76, No. 14, 1834, Apr. 2000. [22] M. Y. Doghish and F. D. Ho, 'A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices,' IEEE Trans. Electron Devices, Vol. 39, No. 12, pp. 2771-2778, Dec. 1992. [23] W. C. Lee and C. Hu, 'Modeling gate and substrate currents due to conduction- and valence-band electron and hole tunneling,' Proc. Symp. VLSI Tech., Dig. Technology Papers, pp. 198-199, Jun. 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46495 | - |
| dc.description.abstract | 因為半導體技術不斷的在進步,以及摩爾定律的存在,所以元件的尺寸不斷的在縮小,根據ITRS的預測,在2012年時,金氧半元件的等效氧化層厚度會達到7.5Å,此時會因為量子效應的顯著而使得漏電流過大,因此,解決方法的提出是必要的。一般提出的解決手段是使用高介電材料來取代傳統的二氧化矽氧化層,但是卻有諸多問題尚未克服,因此,在短期中,提升二氧化矽氧化層的品質仍是必要的。在本文中,提出在成長氧化層時以伸張應力加於矽晶圓的手段來改善矽及二氧化矽之間的界面不一致,以提升成長出的金氧半元件品質。另外,由於在陽極氧化成長過程中可能會有反應未完全的氧化劑陷於氧化層中而降低氧化層品質,因此,另外給予成長完的氧化層真空熱退火處理,試圖減少氧化劑存在於氧化層中的可能性來改善元件特性。實驗結果證明,施加伸張應力的氧化層在電性及穩定度都優於一般方法成長出的氧化層;另外,經過真空熱退火處理的氧化層能更進一步改善氧化層品質及均勻性。 | zh_TW |
| dc.description.abstract | Because of the progress of the technology of semiconductor and the Moore’s law, the size of devices is scaling down at every moment. The equivalent oxide thickness (EOT) will be 7.5Å in 2012 according to the expectation of ITRS. In this moment, the quantum mechanical effect will be noticeable, and thus the leakage current will be exceedingly high. Therefore, method to solve this problem should be necessary. The high-κ material is one of promising candidates to replace the SiO2 as gate oxide, but there are still many problems of high-κ material to be solved. Hence, improving the quality of gate oxide of SiO2 will be required in near future. In this thesis, applying tensile stress on silicon wafer during oxidation is proposed to modify the lattice mismatch, and hence promoting the properties of MOS device. Besides, there may be residual oxidants left in the oxide after anodization due to incomplete reaction, and thus they may degrade the oxide quality. Therefore, we try to reduce the residual oxidants in the oxide by vacuum anneal treatment, and then improving the oxide quality. From the experimental results, the electrical properties and reliabilities of the tensile-stress gate oxides are superior to the non-stress gate oxides. On the other hand, the oxide quality and uniformity would be further improved by vacuum anneal treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:12:04Z (GMT). No. of bitstreams: 1 ntu-99-R96943164-1.pdf: 3989562 bytes, checksum: 35029b33a2359097374845e08f32e2ac (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II Contents III Figure Captions V Table Captions IX Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Anodization System 5 Chapter 2 Gate Oxides Prepared by Tensile-Stress Anodization 11 2-1 Introduction 12 2-2 Experimental 13 2-3 Results and Discussion 14 2-3-1 Capacitance-Voltage Characteristics 14 2-3-2 Current Density-Voltage Characteristics 15 2-3-3 Interface Traps 15 2-3-4 Flat-band Voltage Shift 18 2-3-5 Reliability Test 19 2-3-5-1 Time-dependent Dielectric Breakdown using Constant Voltage Stress 20 2-3-5-2 Time-dependent Dielectric Breakdown using Constant Current Stress 20 2-3-6 Oxide Growth Kinetics 21 2-4 Summary 22 Chapter 3 Gate Oxides Prepared by Tensile-Stress Anodization Followed by Vacuum Anneal Treatment 39 3-1 Introduction 40 3-2 Experimental 40 3-3 Results and Discussion 41 3-3-1 Capacitance-Voltage and Current Density-Voltage Characteristics 41 3-3-2 Current Density Versus the Inverse of Accumulation Capacitance 42 3-3-3 Reliability Test 44 3-3-3-1 Time-dependent Dielectric Breakdown using Constant Voltage Stress 44 3-3-3-2 Time-dependent Dielectric Breakdown using Constant Current Stress 45 3-4 Summary 45 Chapter 4 Conclusion and Future Work 57 4-1 Conclusion 57 4-2 Suggestions for Future Work 59 References 61 | |
| dc.language.iso | en | |
| dc.subject | 真空熱退火 | zh_TW |
| dc.subject | 金氧半 | zh_TW |
| dc.subject | 二氧化矽 | zh_TW |
| dc.subject | 陽極氧化 | zh_TW |
| dc.subject | 伸張應力 | zh_TW |
| dc.subject | SiO2 | en |
| dc.subject | vacuum anneal | en |
| dc.subject | tensile-stress | en |
| dc.subject | MOS | en |
| dc.subject | anodization | en |
| dc.title | 利用伸張應力陽極氧化生長技術及真空退火處理改善
超薄氧化層品質 | zh_TW |
| dc.title | Improvement in Ultra-thin Oxide Quality by Tensile-Stress Anodization Technique and Vacuum Anneal
Treatment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林致廷(Chih-Ting Lin),郭宇軒(Yu-Hsuan Kuo) | |
| dc.subject.keyword | 金氧半,二氧化矽,陽極氧化,伸張應力,真空熱退火, | zh_TW |
| dc.subject.keyword | MOS,SiO2,anodization,tensile-stress,vacuum anneal, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
