請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4648完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳敏璋(Miin-Jang Chen) | |
| dc.contributor.author | Chi-Lun Huang | en |
| dc.contributor.author | 黃紀倫 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:44:37Z | - |
| dc.date.available | 2020-09-02 | |
| dc.date.available | 2021-05-14T17:44:37Z | - |
| dc.date.copyright | 2015-09-02 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-27 | |
| dc.identifier.citation | [1] Musschoot, J., et al. (2009). 'Atomic layer deposition of titanium nitride from TDMAT precursor.' Microelectronic Engineering 86(1): 72-77.
[2] Westlinder, J., et al. (2004). 'Variable work function in MOS capacitors utilizing nitrogen-controlled TiNx gate electrodes.' Microelectronic Engineering 75(4): 389-396. [3] Puurunen, R. L. (2005). 'Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process.' Journal of Applied Physics 97(12): 121301. [4] Leskelä, M. and M. Ritala (2002). 'Atomic layer deposition (ALD): from precursors to thin film structures.' Thin Solid Films 409(1): 138-146. [5] Kääriäinen, T., et al. (2013). Atomic Layer Deposition: Principles, Characteristics, and Nanotechnology Applications, Wiley. [6] Little, P. F. and A. von Engel (1954). 'The Hollow-Cathode Effect and the Theory of Glow Discharges.' Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 224(1157): 209-227. [7] Pillow, M. E. (1981). 'A critical review of spectral and related physical properties of the hollow cathode discharge.' Spectrochimica Acta Part B: Atomic Spectroscopy 36(8): 821-843. [8] Mavrodineanu, R. (1984). 'Hollow Cathode Discharges - Analytical Applications.' Journal of Research of the National Bureau of Standards 89(2): 143. [9] Bárdoš, L. and N. Q. Vu (1989). 'RF generation of the plasma jet channel for the jet PCVD.' Czechoslovak Journal of Physics 39(7): 731-738. [10] White, A. D. (1959). 'New Hollow Cathode Glow Discharge.' Journal of Applied Physics 30(5): 711. [11] Eichhorn, H., et al. (1993). 'Paschen’s law for a hollow cathode discharge.' Applied Physics Letters 63(18): 2481. [12] Bárdoš, L., et al. (1997). 'Thin film processing by radio frequency hollow cathodes.' Surface and Coatings Technology 97(1-3): 723-728. [13] Musha, T. (1962). 'Theory of Negative Resistance in Hollow Cathode Discharges.' Journal of the Physical Society of Japan 17(9): 1447-1453. [14] Bárdoš, L. and V. Dušek (1988). 'High rate jet plasma-assisted chemical vapour deposition.' Thin Solid Films 158(2): 265-270. [15] Baránková, H. (1994). 'Enhancement of the Reactive Deposition Rate of TiN Films at Low Nitrogen Content.' Journal of The Electrochemical Society 141(1): L8. [16] Kreibig, U. (1974). 'Electronic properties of small silver particles: the optical constants and their temperature dependence.' Journal of Physics F: Metal Physics 4(7): 999-1014. [17] Nguyen, H. V., et al. (1992). 'Evolution of the optical functions of aluminum films during nucleation and growth determined by real-time spectroscopic ellipsometry.' Physical Review Letters 68(7): 994-997. [18] Nguyen, H. V., et al. (1993). 'Evolution of the optical functions of thin-film aluminum: A real-time spectroscopic ellipsometry study.' Physical Review B 47(7): 3947-3965. [19] Soriano, L., et al. (1997). 'The electronic structure of TiN and VN: X-ray and electron spectra compared to band structure calculations.' Solid State Communications 102(4): 291-296. [20] Patsalas, P. and S. Logothetidis (2001). 'Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films.' Journal of Applied Physics 90(9): 4725. [21] Patsalas, P., et al. (2000). 'The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films.' Surface and Coatings Technology 125(1-3): 335-340. [22] Hojo, J., et al. (1977). 'Defect structure, thermal and electrical properties of Ti nitride and V nitride powders.' Journal of the Less Common Metals 53(2): 265-276. [23] Delfino, M., et al. (1992). 'X-ray photoemission spectra of reactively sputtered TiN.' Journal of Applied Physics 71(12): 6079. [24] Allgair, J. A., et al. (2008). 'Measurement of high-k and metal film thickness on FinFET sidewalls using scatterometry.' 6922: 69220V-69220V-8. [25] Min, J.-S., et al. (1998). 'Atomic Layer Deposition of TiN Films by Alternate Supply of Tetrakis(ethylmethylamino)-Titanium and Ammonia.' Japanese Journal of Applied Physics 37(Part 1, No. 9A): 4999-5004. [26] Rodriguez-Reyes, J. C. F. and A. V. Teplyakov (2007). 'Surface transamination reaction for tetrakis(dimethylamido)titanium with NHx-terminated si(100) surfaces.' Journal of Physical Chemistry C 111(44): 16498-16505. [27] Caubet, P., et al. (2008). 'Low-Temperature Low-Resistivity PEALD TiN Using TDMAT under Hydrogen Reducing Ambient.' Journal of The Electrochemical Society 155(8): H625. [28] Kim, H. K., et al. (2002). 'Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3.' Journal of the Korean Physical Society 41(5): 739-744. [29] Yun, J.-H., et al. (2002). 'Effect of Post-Treatments on Atomic Layer Deposition of TiN Thin Films Using Tetrakis(dimethylamido)titanium and Ammonia.' Japanese Journal of Applied Physics 41(Part 2, No. 4A): L418-L421. [30] Raaijmakers, I. J. (1994). 'Low temperature metal-organic chemical vapor deposition of advanced barrier layers for the microelectronics industry.' Thin Solid Films 247(1): 85-93. [31] Kim, D.-H., et al. (2004). 'Preparation of TiN films by plasma assisted atomic layer deposition for copper metallization.' Materials Science and Engineering: C 24(1-2): 289-291. [32] Fillot, F., et al. (2005). 'Investigations of titanium nitride as metal gate material, elaborated by metal organic atomic layer deposition using TDMAT and NH3.' Microelectronic Engineering 82(3-4): 248-253. [33] Robertson, J. (2000). 'Band offsets of wide-band-gap oxides and implications for future electronic devices.' Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18(3): 1785. [34] Gilmer, D. C., et al. (2003). 'Compatibility of silicon gates with hafnium-based gate dielectrics.' Microelectronic Engineering 69(2-4): 138-144. [35] Schaeffer, J. K., et al. (2003). 'Physical and electrical properties of metal gate electrodes on HfO2 gate dielectrics.' Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21(1): 11. [36] Choi, C. H., et al. (2003). 'Electrical properties and thermal stability of CVD HfOxNy gate dielectric with poly-Si gate electrode.' IEEE Electron Device Letters 24(4): 215-217. [37] Narayanan, V., et al. (2004). 'Dual work function metal gate CMOS using CVD metal electrodes.' 192-193. [38] Schaeffer, J. K., et al. (2003). 'Physical and electrical properties of metal gate electrodes on HfO2 gate dielectrics.' Journal of Vacuum Science & Technology B 21(1): 11-17. [39] Fröhlich, K., et al. (2004). 'Ru and RuO2 gate electrodes for advanced CMOS technology.' Materials Science and Engineering: B 109(1-3): 117-121. [40] Liu, Y., et al. (2006). 'Investigation of the TiN Gate Electrode With Tunable Work Function and Its Application for FinFET Fabrication.' [41] Singanamalla, R., et al. (2006). 'On the impact of TiN film thickness variations on the effective work function of poly-Si/TiN/SiO2/ and poly-Si/TiN/HfSiON gate stacks.' IEEE Electron Device Letters 27(5): 332-334. [42] Liu, Y., et al. (2010). 'Nanoscale Wet Etching of Physical-Vapor-Deposited Titanium Nitride and Its Application to Sub-30-nm-Gate-Length Fin-Type Double-Gate Metal–Oxide–Semiconductor Field-Effect Transistor Fabrication.' Japanese Journal of Applied Physics 49(6): 06GH18. [43] Yeo, Y.-C., et al. (2002). 'Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology.' Journal of Applied Physics 92(12): 7266. [44] Hobbs, C. C., et al. (2004). 'Fermi-Level Pinning at the Polysilicon/Metal&Oxide Interface.' IEEE Transactions on Electron Devices 51(6): 978-984. [45] Lin, R., et al. (2002). 'An adjustable work function technology using Mo gate for CMOS devices.' IEEE Electron Device Letters 23(1): 49-51. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4648 | - |
| dc.description.abstract | 隨著半導體工業的發展,電晶體尺寸逐漸縮小,傳統的多晶矽閘極漸漸被金屬閘極給取代;由於氮化鈦(Titanium Nitride, TiN)具有高硬度、熱穩定性佳、低電阻率等優點,因此氮化鈦成為很好的金屬閘極材料。電晶體的尺寸縮小,對尺寸的精密度的要求愈高,由於原子層沉積技術(Atomic Layer Deposition , ALD)具又大面積均勻性、精密的控制厚度、高包覆度及低缺陷密度等優勢,因此成為十分有發展潛力的技術。本論文利用ALD技術製備氮化鈦(Titanium Nitride, TiN)薄膜,使用四(二甲胺基)鈦(tetrakis(dimethylamido)titanium, TDMAT)與氨氣電漿(NH3 plasma)作為precursor,其成長速率約為0.134nm/cycle,電阻率可以到5.77×10-5Ω-cm,為目前文獻中最低的電阻率。此外,本研究也透過金氧半電容元件量測氮化鈦的功函數,在不同的厚度及氣體電漿處理下,氮化鈦的功函數可以調整在4.1eV~4.7eV的範圍內,預期在電晶體上有很重要的應用。 | zh_TW |
| dc.description.abstract | As the semiconductor devices continues shrinking, not only the standard silicon dioxide gate dielectric has to be replaced with a high-K material, but also the commonly used poly-Si gate electrode has to be substituted by a low-resistive metallic material. Since titanium nitride (TiN) is a hard, thermally stabile, and low-resistivity metallic material, it is a good candidate for the new gate electrode. In addition, because the devices scale is scaled down to ~10 nm range, atomic layer deposition (ALD) technique is strongly needed to prepare the ultrathin films because of its high uniform in a large area, excellent conformality, low defect density, and accurate control of film thickness. In this thesis, the ALD technique was used to prepare the TiN metal gate, with a growth rate of 0.134nm per ALD cycle using TDMAT(tetrakis(dimethylamido)titanium) and remote NH3 plasma as the precursors. A low resistivity 5.77×10-5Ω-cm of the TiN thin flims was acheived. The work function of the TiN metal gate was also characterized in this study. The work function of the TiN metal gate varies between 4.1eV and 4.7eV, depending on the film thickness and the plasma treatment, which is beneficial to the adjustment of threshold voltage of transistors. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:44:37Z (GMT). No. of bitstreams: 1 ntu-104-R02527046-1.pdf: 6657114 bytes, checksum: 9600d2ac37ff9735fd953410acfbc2de (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 X 第一章 簡介 1 1.1研究動機 1 1.2原子層沉積技術 1 1.3 Hollow Cathodes電漿產生原理 5 1.4 氮化鈦基本性質 8 1.4.1氮化鈦 8 1.4.2氮化鈦ALD製成 10 第二章 原子層沉積氮化鈦受氣體處理之表現 17 2.1簡介 17 2.2實驗步驟 17 2.2.1清洗試片 17 2.2.2氮化鈦薄膜製成 18 2.2.3氮化鈦薄膜性質及電性測量 19 2.3實驗結果與討論 20 2.4結論 28 第三章 氮化鈦金屬閘極功函數 29 3.1簡介 29 3.2實驗步驟 30 3.2.1成長薄膜 30 3.2.2金屬氧化物半導體製成 31 3.2.3公函數測量 32 3.3實驗結果與討論 33 3.3.1厚度對氮化鈦金屬閘及影響 33 3.3.2不同氣體處理對氮化鈦金屬閘極影響 40 3.3.3 氬氣電漿轟擊對氮化鈦金屬閘極影響 43 3.4結論 47 第四章 超薄氮化鈦金屬閘極 49 4.1簡介 49 4.2實驗步驟 50 4.2.1超薄氮化鈦薄膜製程 50 4.2.2超薄氮化鈦金屬閘極MOS電容元件 50 4.2.3超薄氮化鈦金屬閘極公函數測量 51 4.3實驗結果與討論 52 4.3.1超薄氮化鈦/氧化矽金屬氧化物半導體 52 4.3.2鉑/超薄氮化鈦/氧化矽金屬氧化物半導體 53 4.4結論 59 第五章 總結 61 參考文獻 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 功函數 | zh_TW |
| dc.subject | 電阻率 | zh_TW |
| dc.subject | 氮化鈦 | zh_TW |
| dc.subject | 電漿處理 | zh_TW |
| dc.subject | 原子層沉積技術 | zh_TW |
| dc.subject | 金屬閘極 | zh_TW |
| dc.subject | resistivity | en |
| dc.subject | plasma treatment | en |
| dc.subject | work function | en |
| dc.subject | metal gate | en |
| dc.subject | TiN | en |
| dc.subject | ALD | en |
| dc.title | 利用原子層沉積技術成長氮化鈦金屬閘極之金屬氧化物半導體電容元件之研究 | zh_TW |
| dc.title | Atomic layer deposition of titanium nitride as the metal gate in metal-oxide-semiconductor capacitors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李敏鴻,廖洺漢,吳肇欣,葉凌彥 | |
| dc.subject.keyword | 原子層沉積技術,氮化鈦,電阻率,功函數,電漿處理,金屬閘極, | zh_TW |
| dc.subject.keyword | ALD,TiN,resistivity,work function,plasma treatment,metal gate, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 6.5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
