請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46454
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 駱尚廉 | |
dc.contributor.author | Wei-Ting Shang | en |
dc.contributor.author | 商維庭 | zh_TW |
dc.date.accessioned | 2021-06-15T05:09:52Z | - |
dc.date.available | 2015-07-27 | |
dc.date.copyright | 2010-07-27 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-23 | |
dc.identifier.citation | Bauer, S., Kleber, S. and Schmuki, P. (2006) TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes. Electrochemistry Communications 8(8), 1321-1325.
Cai, Q., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005) The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. Journal of Materials Research 20(1), 230-236. Chen, S., Paulose, M., Ruan, C., Mor, G.K., Varghese, O.K., Kouzoudis, D. and Grimes, C.A. (2006) Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells. Journal of Photochemistry and Photobiology A: Chemistry 177(2-3), 177-184. Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Frey, L. and Schmuki, P. (2006) Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes. Nano Letters 6(5), 1080-1082. Ghicov, A., Tsuchiya, H., Macak, J.M. and Schmuki, P. (2005) Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochemistry Communications 7(5), 505-509. Gong, D., Grimes, C.A., Varghese, O.K., Chen, Z., Hu, W. and Dickey, E.C. (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research 16(12), 3331-3334. Herrmann, J.M. (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today 53(1), 115-129. Hoyer, P. (1996) Formation of a Titanium Dioxide Nanotube Array. Langmuir 12(6), 1411-1413. Kaneco, S., Chen, Y., Westerhoff, P. and Crittenden, J.C. (2007) Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. Scripta Materialia 56(5), 373-376. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K. (1999) Titania Nanotubes Prepared by Chemical Processing. Advanced Materials 11(15), 1307-1311. Legan, R.W. (1982) Ultraviolet light takes on CPI role. TCE: The Chemical Engineer 89(2), 95-100. Li, J., Lu, N., Quan, X, Chen S. and Zhao, H.M. (2008) Facile method for fabricating boron-doped TiO2 nanotube array with enhanced photoelectrocatalytic properties. Industrial and Engineering Chemistry Research 47(11), 3804-3808. Lu, N., Zhao, H., Li, J.Y., Quan, X. a and Chen S. (2008) Characterization of boron-doped TiO2 nanotube arrays prepared by electrochemical method and its visible light activity. Separation and Purification Technology 62(3), 668-673. Lu, N., Quan, X., Li, J.Y., Chen S., Yu, H.T. and Chen, G.H. (2007) Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. The Journal of Physical Chemistry C 111(32), 11836-11842. Macák, J.M., Sirotna, K. and Schmuki, P. (2005) Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochimica Acta 50(18), 3679-3684. Macák, J.M., Tsuchiya, H. and Schmuki, P. (2005) High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angewandte Chemie International Edition 44(14), 2100-2102. Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2004) Enhanced Photocleavage of Water Using Titania Nanotube Arrays. Nano Letters 5(1), 191-195. Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N. and Grimes, C.A. (2003) Fabrication of tapered, conical-shaped titania nanotubes. Journal of Materials Research 18(11), 2588-2593. Nilsson, R., Nordlinder, R., Wass, U., Meding, B. and Belin, L. (1993) Asthma, rhinitis, and dermatitis in workers exposed to reactive dyes. Occupational and Enviro nmental Medicine 50(1), 65-70. Paulose, M., Shankar, K., Yoriya, S., Prakasam, H.E., Varghese, O.K., Mor, G.K., Latempa, T.A., Fitzgerald, A. and Grimes, C.A. (2006) Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length. The Journal of Physical Chemistry B 110(33), 16179-16184. Paulose, M., Prakasam, H.E., Varghese, O.K., Peng, L., Popat, K.C., Mor, G.K., Desai, T.A. and Grimes, C.A. (2007) TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil: Phenol Red Diffusion. The Journal of Physical Chemistry C 111(41), 14992-14997. Prakasam, H.E., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2007) A New Benchmark for TiO2 Nanotube Array Growth by Anodization. The Journal of Physical Chemistry C 111(20), 7235-7241. Raja, K.S., Gandhi, T. and Misra, M. (2007) Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochemistry Communications 9(5), 1069-1076. Shankar, K., Mor, G.K., Prakasam, H.E, Yoriya, S., Paulose M., Varghese, O.K. and Grimes, C.A. (2007) Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707. Su, Y., Han, S., Zhang, X., Chen, X. and Lei, L. (2008) Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes. Materials Chemistry and Physics 110(2-3), 239-246. Sun, L., Li, J., Wang, C.L., Li, S.F., Chen, H.B. and Lin, C.J. (2009) An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity. Solar Energy Materials and Solar Cells 93(10), 1875-1880. Tang, X. H. and Li, D. Y. (2008) Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response. Journal of Physical Chemistry C 112(14), 5405-5409 Wu, X., Jiang, Q.Z., Ma, Z.F., Fu, M. and Shangguan, W.F. (2005) Synthesis of titania nanotubes by microwave irradiation. Solid State Communications 136(9-10), 513-517. Yang, L., Yang, W. and Cai, Q. (2007) Well-dispersed PtAu nanoparticles loaded into anodic titania nanotubes: a high antipoison and stable catalyst system for methanol oxidation in alkaline media. The Journal of Physical Chemistry C 111(44), 16613-16617. Yang, L., Luo, S., Liu, S. and Cai, Q. (2008) Graphitized carbon nanotubes formed in TiO2 nanotube arrays: A novel functional material with tube-in-tube nanostructure. Journal of Physical Chemistry C 112(24), 8939-8943 Yasuda, K. and Schmuki, P. (2007) Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochimica Acta 52(12), 4053-4061. Zhang, Z., Yuan, Y., Liang, L., Cheng, Y., Shi,G., Jin, L. (2008) Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation. Journal of Hazardous Materials 158(2-3), 517-522. Zhao, W., Ma, W., Chen, C., Zhao, J. and Shuai, Z. (2004) Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation. Journal of the American Chemical Society 126(15), 4782-4783. Zhuang, H.F., Lin, C.J., Lai, Y.K., Sun, L. and Li, J. (2007) Some Critical Structure Factors of Titanium Oxide Nanotube Array in Its Photocatalytic Activity. Environmental Science & Technology 41(13), 4735-4740. 林健宏,2007,「以微波水熱法合成硫化鋅觸媒光催化降解水中染劑」,碩士論文,國立台灣大學環境工程學研究所。 翁瑞宏,2007,「氧化鈦奈米管陣列的合成及其和聚噻吩複合材料性質的研究」,碩士論文,國立中央大學化學工程與材料工程研究所。 陳秀瑜,2008,「微波水熱法合成氧化鈦奈米管—特性鑑定與光催化潛勢之研究」,博士論文,國立台灣大學環境工程學研究所。 歐信宏,2008,「微波水熱法合成氧化鈦奈米管—特性鑑定與光催化潛勢之研究」,博士論文,國立台灣大學環境工程學研究所。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46454 | - |
dc.description.abstract | 本研究利用陽極氧化法製備氧化鈦奈米管陣列,藉由改變電解液組成與操作參數合成不同縱橫比之氧化鈦奈米管陣列,並以化學氣相沉積法與電沉積法摻雜硼原子進行改質,降低二氧化鈦之能帶間隙,提升其對可見光的吸收能力。透過場發射掃描式電子顯微鏡、X光粉末繞射儀、拉曼光譜儀、紫外可見光光譜儀以及傅立葉氏轉換紅外線光譜儀分析,將對改質前後之光觸媒進行分析,並選定目標污染物甲基橙進行光催化實驗,探討各光觸媒之光催化活性。
由XRD 的分析結果可知,經500℃高溫鍛燒後,氧化鈦奈米管陣列之anatase晶型強度隨著提高縱橫比而增加。而經過硼原子的改質後,其anatase晶型的強度減弱。由UV-Vis吸收光譜圖可知,改質後的氧化鈦奈米管陣列的在紫外光及可見光區有較好的吸收效果,並且吸光範圍有些許的紅位移。 實驗結果顯示,氧化鈦奈米管陣列的結構特性影響其光催化活性,其中,高縱橫比之氧化鈦奈米管陣列對光催化甲基橙具有最佳的降解速率。利用化學氣相沉積法及電沉積法製備硼摻雜氧化鈦奈米管陣列,皆可發現改質後之觸媒光催化活性較佳。而利用電沉積法所得到的最佳摻雜量較低,就可達顯著的修飾效果;相較之下,利用化學氣相沉積法時,硼摻雜的濃度較高,才可提升其光催化效率。而當摻雜濃度相同時,低縱橫比的管長較短,可受到的修飾比例較多,故修飾效果較明顯;而隨著縱橫比的增加,硼原子只分佈於氧化鈦奈米管表面,無法深入氧化鈦奈米管底部,使其改質效果較不明顯。此外,由FT-IR的結果可知,MO的鍵結訊號在照光30分鐘後,即從硼摻雜之觸媒上逐漸消失,而未改質前的觸媒,直至照光2小時後MO的鍵結訊號才明顯削弱。 | zh_TW |
dc.description.abstract | The objective of this study was to modify TiO2 nanotube arrays with boron via two doping methods including chemical vapor deposition and electrodeposition. With various characterizations including Field-Emission Scanning Electron Microscope (FE-SEM), Raman Spectrophotometer, X-Ray Diffractometer (XRD), UV-Visible Spectrophotometer (UV-Vis) and Fourier Transform Infrared Spectrophotometer (FT-IR), the effects of aspect ratios of TiO2 nanotube arrays on the doping performance were investigated. The photoactivity of B-doped TiO2 nanotube arrays was also examined in terms of the oxidation efficiency of methyl orange (MO).
The XRD patterns of TiO2 nanotube arrays calcined at 500 ℃ showed that the intensity of anatase peak increased with increasing the aspect ratio. After boron doping, the intensity of anatase peaks decrease. The UV-Vis DRS spectra indicated that the absorption intensity of the B-doped TiO2 nanotube arrays was enhanced both in the UV and visible regions. In addition, all the B-doped TiO2 nanotube arrays exhibit red shifts. The results indicated that the photoactivity of TiO2 nanotube arrays is significantly dependent on the aspect ratio. An increase in the aspect ratio of TiO2 nanotube arrays leads to an improved efficiency of MO oxidation. Furthermore, the photoactivity of TiO2 nanotube arrays was enhanced after B doping via either chemical vapor deposition or electrodeposition. The optimum boron doping concentration prepared by electrodeposition was lower than that by chemical vapor deposition. Meanwhile, the enhancement of photocatalytic performance of B-modified TiO2 nanotube arrays is apparent when the aspect ratio is lower. This result is probably owing to the fact that the larger the aspect ratio, the less TiO2 nanotube arrays can be modified. Based on the FT-IR spectra, the intensity of MO absorption bands over B-modified TiO2 nanotube arrays vanished after 0.5 h UV illumination whereas the MO signal over unamended TiO2 nanotube arrays remained obvious after 2 h UV illumination. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:09:52Z (GMT). No. of bitstreams: 1 ntu-99-R97541119-1.pdf: 3660409 bytes, checksum: 0e5ea36be8e0112ed182f5189525aba3 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract II 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的及內容 2 第二章 文獻回顧 3 2-1 氧化鈦奈米管之製備 3 2-2 陽極氧化法 5 2-2-1 形成機制 5 2-2-2 控制條件 9 2-3 氧化鈦奈米管的改質 11 2-3-1 摻雜金屬元素 12 2-3-2 摻雜非金屬元素 12 2-3-3 半導體複合 14 2-3-4 摻雜方法 14 2-4 光化學反應 17 2-4-1 光反應種類 17 2-4-2 光催化反應動力模式 19 2-5 染料 21 2-5-1 偶氮染料 22 2-5-2 甲基橙 22 第三章 實驗方法與內容 24 3-1 實驗設計 24 3-2 材料製備 24 3-2-1 氧化鈦奈米管陣列之製備 24 3-2-2 硼摻雜氧化鈦奈米管之製備 27 3-3 實驗方法 30 3-3-1 背景實驗 30 3-3-2 光催化實驗 30 3-4 催化材料物化性分析 32 3-4-1 場發射掃瞄式電子顯微鏡 32 3-4-2 拉曼光譜儀 33 3-4-3 X光粉末繞射儀 33 3-4-4 紫外可見光光譜儀 34 3-4-5 傅立葉氏轉換紅外線光譜儀 34 3-5 污染物定量分析 35 3-5-1 污染物之最大吸收波長 35 3-5-2 污染物之濃度定量分析 35 第四章 結果與討論 36 4-1 氧化鈦奈米管陣列之物化性分析 36 4-1-1 SEM影像分析 36 4-1-2 Raman分析 43 4-1-3 XRD分析 44 4-1-4 紫外-可見光光譜分析 47 4-2 背景實驗 52 4-2-1 MO之最大吸收波長測定 52 4-2-2 直接光解 53 4-2-3 吸附實驗 55 4-2-4 不同縱橫比之氧化鈦奈米管陣列的光催化能力 56 4-3 硼摻雜氧化鈦奈米管陣列之光催化反應實驗 59 4-3-1 以化學氣相沉積法摻雜硼 59 4-3-2 以電沉積法摻雜硼 61 4-4 光催化反應動力學探討 63 4-4-1 傅立葉轉換紅外線光譜儀分析 63 4-4-2 光催化反應動力探討 69 第五章 結論與建議 75 5-1 結論 75 5-2 建議 76 第六章 參考文獻 77 | |
dc.language.iso | zh-TW | |
dc.title | 以硼摻雜氧化鈦奈米管陣列光催化甲基橙之研究 | zh_TW |
dc.title | Photocatalytic Oxidation of Methyl Orange over Boron-doped TiO2 Nanotube Arrays | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭繼汾,闕蓓德,劉雅瑄 | |
dc.subject.keyword | 陽極氧化法,硼摻雜,化學氣相沉積,電沉積,光催化,氧化鈦奈米管陣列, | zh_TW |
dc.subject.keyword | Anodic oxidation,Boron doping,Chemical vapor deposition,Electrodeposition,Photocatalysis,TiO2 nanotube arrays, | en |
dc.relation.page | 91 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 3.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。