Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46413Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 謝之真 | |
| dc.contributor.author | Kuan-Hsun Chen | en |
| dc.contributor.author | 陳冠勳 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:07:49Z | - |
| dc.date.available | 2015-07-29 | |
| dc.date.copyright | 2010-07-29 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-26 | |
| dc.identifier.citation | 1. R. Kopelman, Y. E. L. Koo, M. Philbert, B. A. Moffat, G. Ramachandra Reddy, P McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, A. Rehemtulla, B. D. Ross. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J. Magn. Magn. Mater. 2005, 293, 404.
2. E. J. Furlani, E. P. Furlani. A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J. Magn. Magn. Mater. 2007, 312, 187. 3. X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z. P. Luo, K. Park, J. T. Markert, C. Li. Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy. J. Phys. Chem. C. 2007, 111, 6245. 4. C. H. Su, H. S. Sheu, C. Y. Lin, C. C. Huang, Y. W. Lo, Y. C. Pu, J. C. Weng, D. B. Shieh, J. H. Chen, C. S. Yeh. Nanoshell Magnetic Resonance Imaging Contrast Agents. J. Am. Chem. Soc. 2007, 129, 2139. 5. J. H. Lee, Y. M. Huh, Y. W. Jun, J. W. Seo, J. T. Jang, H. T. Song, S. Kim, E. J. Cho, H. G. Yoon, J. S. Suh, J. Cheon. Artificially engineered magnetic particles for ultra-sensitive molecular imaging. Nat. Med. 2007, 13, 95. 6. L. Babes, B. Denizot, G. Tanguy, J. Jacques L. Jeune, P. Jallet. Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents:A Parametric Study. J. Colloid Interface Sci. 1999, 212, 474. 7. D. K. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke, M. Muhammed. Characterization and MRI Study of Surfactant-coated Superparamagnetic Nanoparticles Administered into the Rat Brain. J. Magnetism Magnetic Mater. 2001, 225, 256. 8. D. B. Robinson, H. H. J. Persson, H. Zeng, G. Li, N. Pourmand, S. Sun, S. X. DNA-Functionalized MFe2O4 (M = Fe, Co, or Mn) Nanoparticles and Their Hybridization to DNA-Functionalized Surfaces. Langmuir. 2005, 21, 3096. 9. J. Lim, R. D. Tilton, A. Eggeman, S. A. Majetich. Design and Synthesis of Plasmonic Magnetic Nanoparticles. J. Magn. Magn. Mater. 2007, 311, 78. 10. T. Osaka, T. Matsunaga, T. Nakanishi, A. Arakaki, D. Niwa, H. Iida. Synthesis of magnetic nanoparticles and their application to bioassays. Anal. Bioanal. Chem. 2006, 384, 593. 11. M. Suzuki, M. Shinkai, M. Yanase, A. Ito, H. Honda and T. Kobayashi. Enhancement of uptake of magnetoliposomes by magnetic force and hyperthermic effect on tumor. Jpn. J. Hyperthermic. Oncol. 1999, 15, 79-87. 12. M. J. Shinkai. Functional Magnetic Particles for Medical Application. J. Biosci. Bioeng. 2002, 94, 606-613. 13. A. K. Guptaa, M. Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26, 3995. 14. D. K. Kim, M. Mikhaylova, F. H. Wang, J. Kehr, B. Bjelke, Y. Zhang, T. Tsakalakos, M. Muhammed. Starch-coated superparamagnetic nanoparticles as MRI contrast agents. Chem. Mater. 2003, 15, 4343. 15. Y. W. Jun, et al. Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging. J. Am. Chem. Soc. 2005, 127, 5732. 16. J. Dobson. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 2006, 13, 283. 17. O. Mykhaylyk, Y. S. Antequera, D. Vlaskou, C. Plank. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat. Protoc. 2007, 2, 2391. 18. S. C. McBain, H. HP. Yiu, J. Dobson. Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomedicine. 2008, 3, 169. 19. U. Schillinger, et al. Advances in magnetofection – magnetically guided nucleic acid delivery. J. Magn. Magn. Mater. 2005, 293, 501. 20. S. S. Papell, US Patent. Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particle. 1965, 321, 5572. 21. J. M. D. Coey, D. Khalafalla. Superparamagnetic γ-Fe2O3. Phys. Stat. Sol. 1972, 11, 229. 22. J. Gass, P. Poddar, J. Almand, S. Srinath, H. Srikanth. Adv. Funct. Mater. 2006, 16, 71. 23. T. J. Daou, G. Pourroy, S. Begin-Colin, J. M. Greneche, C. Ulhaq-Bouillet, P. Legare, P. Bernhardt, C. Leuvrey, G. Rogez. Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles. Chem. Mater. 2006, 18, 4399. 24. T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. J. Am. Chem. Soc. 2001, 123, 12798. 25. J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, T. Hyeon. Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials. 2004, 3, 89. 26. K. S. Suslick, M. Fang, T. Hyeon. Sonochemical Synthesis of Iron Colloids. J. Am. Chem. Soc. 1996, 118, 11960. 27. M. N. V. R. Kumar. A review of chitin and chitosan applications. Reactive & Functional Polymers. 2000, 46, 1 –27. 28. M. N. V. R. Kumar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, A. J. Domb. Chitosan Chemistry and Pharmaceutical Perspectives. Chem. Rev. 2004, 104, 6017. 29. I. M. N. Vold, E. Bjørn. Periodate oxidation of chitosans with different chemical compositions. Carbohydr. Res. 2005, 340, 679. 30. G. Zhang, V. Gurtu, S. R. Kain. An Enhanced Green Fluorescent Protein Allows Sensitive Detection of Gene Transfer in Mammalian Cells. Biochem. Biophys. Res. Commun. 1996, 227, 707. 31. K. B, P.K. Selbo, A. Weyergang, A. Dietze, L. Prasmickaite, A. Bonsted, B.O. Engesaeter, E. Angell-Petersen, T. Warloe, N. Frandsen, A. Hogset. Porphyrin- related photosensitizers for cancer imaging and therapeutic applications. J. Microsc. 2005, 218, 133. 32. B. W. Henderson, T. J. Dougherty. How does photodynamic therapy work? Photochem. Photobiol. 1992, 55, 145. 33. Y. Hayata, H. Kato, C. Konaka, J. Ono, N. Takizawa. Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. CHEST. 1982, 81, 269. 34. C. Giulivi, M. Sarcansky, E. Rosenfeld, A. Boveris. The photodynamic effect of rose bengal on proteins of the mitochondrial inner membrane. Photochem. Photobiol. 1990, 52, 745. 35. I. E. Kochevar, C. R. Lambert, M. C. Lynch, A.C. Tedesco. Comparison of photosensitized plasma membrane damage caused by singlet oxygen and free radicals. Biochim. Biophys. Acta, 1996, 1280(2), 223-30. 36. J. Desbrières, C. Martinez, M. Rinaudo. Hydrophobic derivatives of chitosan: Characterization and rheological behaviour. Int. J. Biol. Macromol. 1996, 19, 21. 37. T. Zhang, R. E. Marchant. Novel Polysaccharide Surfactants: The Effect of Hydrophobic and Hydrophilic Chain Length on Surface Active Properties. J. Colloid Interface Sci. 1996, 177, 419. 38. A. Hirai, H. Odani, A. Nakajima. Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym. Bull. 1991, 26, 87. 39. U. K. Tirlapur, K. König. Cell biology: Targeted transfection by femtosecond laser. Brief Communications, 2002, 418, 290-291. 40. L. Qiao, R. Hanif, E. Sphicas, S. J. Shiff, B. Rigas. Effect of aspirin on induction of apoptosis in HT-29 human colon adenocarcinoma cells. Biochem. Pharmacol. 1998, 55, 53. 41. C. Flors, M. J. Fryer, J. Waring, B. Reeder, U. Bechtold, P. M. Mullineaux, S. Nonell, M. T. Wilson, N. R. Baker. Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green. J. Exp. Bot. 2006, 57, 1725. 42. R. Bonnett. Photosensitizers of the Porphyrin and Phthalocyanine Series for Photodynamic Therapy. Chem. Soc. Rev. 1995, 24, 19. 43. I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, P. N. Prasad. Ceramic-Based Nanoparticles Entrapping Water- Insoluble Photosensitizing Anticancer Drugs: A Novel Drug-Carrier System for Photodynamic Therapy. J. Am. Chem. Soc. 2003, 125, 7860-7865. 44. M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic, D. A. Russell. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’. Photochem. Photobiol. Sci. 2006, 5, 727–734 45. J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, P. N. Prasad, Two-Photon Photodynamic Therapy. J. Clin. Laser Med. Surg. 1999, 15, 201-204. 46. H. Stiel, K. Teuchner, A. Paul, W. Freyer, D. Leupold. Two-photon excitation of alkyl-substituted magnesium phthalocyanine: radical formation via higher excited states. J Photochem. PhoioiGol. A: Chem. 1994, 80, 289-298. 47. D. Gao, R. R. Agayan, H. Xu, M. A. Philbert, R. Kopelman. Nanoparticles for Two-Photon Photodynamic Therapy in Living Cells. Nano Lett. 2006, 6, 2383–2386. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46413 | - |
| dc.description.abstract | 長久以來,由於其特殊性質,磁性奈米粒子 (MNPs) 的合成受到科學和技術上的重視。在生物醫學領域MNPs已經廣泛地應用於組織影像、強化核磁共振的造影及有選擇性地和具功能性的脫氧核醣核酸混合。在本研究中,我們用過碘酸鈉 (NaIO4) 將幾丁聚醣環狀結構開環而得到醛基化幾丁聚醣。接著在醛基化幾丁聚醣上鍵結正十六胺,進而合成具有疏水和親水端的幾丁聚醣。改質後的兩性烷基化幾丁聚醣可以藉由形成微胞去包覆由有機相合成的MNPs使其從有機相轉至水相中穩定懸浮。根據X光繞射分析儀 (XRD) 和震動樣品磁強計 (VSM) 的測試結果,MNPs顯現出超順磁的特性。由穿透式電子顯微鏡 (TEM) 的影像,MNPs和被兩性烷基化幾丁聚醣包覆的磁性奈米粒子 (CMNPs) 大小分別為7奈米和25奈米。於基因轉殖實驗中,CMNPs經由帶正電之幾丁聚醣與綠色螢光蛋白表達載體 (pEGFP-N1) 形成複合體 (complex) 在磁場的有無條件下與大腸癌HT-29細胞株共同培養。藉由共軛焦顯微鏡的偵測和細胞存活率的測試,HT-29細胞有著超過90%的存活率且在磁場下展現比在無磁場下較多的綠色基因螢光表達。於光動力療法實驗鍵結上孟加拉玫瑰素 (rose bengal) 之CMNPs與HT-29細胞共同培養後,經由540奈米波長的發光二極體 (LED) 照射後會導致自由基 (singlet oxygen) 的產生進而殺死細胞。 | zh_TW |
| dc.description.abstract | Synthesis of magnetic nanoparticles (MNPs) has long been of scientific and technical interest due to their potential applications in tissue images, contrast enhancement to magnetic resonance imaging (MRI), and selective hybridization to nucleic acids. In this study, we employed NaIO4 to open the cyclic structure of chitosan and obtain periodate-oxidized chitosan that is further grafted with 1-hexadecylamine to form modified chitosan with amphiphilic feature. The alkylated chitosan could convert organically synthesized MNPs into aqueous phase by virtue of hydrophobic interaction. As shown in XRD and VSM analysis, MNPs exhibited superparamagnetic characteristics. TEM data showed that the average size of MNPs and the amphiphilic chitosan-capped MNPs (CMNPs) were 7 and 25 nm, respectively. In gene transfection study, CMNPs utilized positively charged chitosan to form complexes with plasmid pEGFP-N1 were co-cultured with colon HT-29 cancer cells with and without magnetic field. According to confocal microscopic images and cell viability assay, HT-29 cells could remain over 90% cell viability and express more green fluorescence proteins in the presence of magnetic field. In photodynamic therapy study, CMNPs conjugated with rose bengal (RB) were used to challenge HT-29 cells and then irradiated with 540 nm light emitting diode (LED) light. The singlet oxygen released from the illuminated cells were detected and accounted for the destruction of HT-29 cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:07:49Z (GMT). No. of bitstreams: 1 ntu-99-R97524064-1.pdf: 4130226 bytes, checksum: 62dc57f4bde6bb1f5271242c7d618e8f (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | List
誌謝 i 中文摘要 ii Abstract iii List v 1. Introduction 1 1.1 Nanomaterials 1 1.1.1 Definition of nanomaterials 1 1.1.2 Quantum effect 2 1.2 Bio-application of magnetic nanomaterials 4 1.2.1 Magnetic separation 4 1.2.2 Drug delivery 5 1.2.3 Magnetic fluid hyperthermia 6 1.2.4 Magnetic Resonance imaging 7 1.2.5 Magnetofection 9 1.3 Synthesis of iron oxide 9 1.4 Chitosan surfactant 11 1.5 Gene transfection 11 1.6 Photodynamic therapy 12 2. Experimental Design 14 2.1 Materials 14 2.2 Experiment Step 17 2.2.1 Synthesis of MNPs 17 2.2.2 Synthesis of amphiphilic chitosan 19 2.2.3 Critical aggregation concentration of amphiphilic chitosan 22 2.2.4 MNPs encapsulated with amphiphilic chitosan (CMNP) 22 2.2.5 Gene transfection 26 2.2.6 Rose bengal tagged CMNPs (RB-CMNP) 28 2.2.7 Photodynamic treatment of cells endocytosed with RB-CMNP 28 2.2.8 Detection of singlet oxygen 30 3. Results and Discussion 31 3.1 Synthesis and characterization of MNPs and CMNPs 31 3.1.1 MNPs (Fe3O4) 31 3.1.2 Amphiphilic chitosan 35 3.1.3 MNPs capped with amphiphilic chitosan 40 3.2 Gene transfection 41 3.2 Photodynamic therapy 43 4. Conclusions 48 5. Future work 49 6. References 51 List of Tables Table 1.1 Classification of nanomaterials 2 Table 1.2 HT-29 versus NIH 3T3 12 List of Figures Figure 1.1 An example of magnetic separation 5 Figure 1.2 Time courses of tumor growth of 5 rats in each group. 6 Figure 1.3 Nanoscale size effect of water-soluble Fe3O4 iron oxide (WSIO) nanocrystals on magnetism and induced MR signals. 8 Figure 1.4 Enhancement of nucleic acid delivery by magnetofection. 10 Figure 1.5 Gene transfection performed with the aid of magnetic field 13 Figure 1.6 Photodynamic therapy driven by CMNPs grafted with rose bengal 13 Figure 2.1 Synthesis of MNPs 18 Figure 2.2 Synthesis of amphiphilic chitosan 21 Figure 2.3 MNPs encapsulated with amphiphilic chitosan 24 Figure 2.4 Amphiphilic chitosan utilizing its alkyl chains to associate with oleic acid originally used to stabilize MNPs suspended in an organic phase. 25 Figure 2.5 Gene transfection 27 Figure 2.6 Preparation of rose bengal tagged CMNP (RB-CMNP) 27 Figure 2.7 MTT assay 29 Figure 3.1 XRD pattern of MNPs 31 Figure 3.2 Size distribution of MNPs 32 Figure 3.3 TEM image of MNPs. 33 Figure 3.4 Magnetic hysteresis curve of (a) MNPs and (b) CMNPs detected by vibrating sample magnetometer (VSM) 34 Figure 3.5 Emission spectra of pyrene in amphiphilic chitosan solution. 35 Figure 3.6 Plot of I 374.5 /I 394 intensity ratio of pyrene fluorescence spectra as a function of concentration of amphiphilic chitosan aqueous solutions. 36 Figure 3.7 H1 NMR spectra of (a) chitosan, (b) periodate-oxidize chitosan, and (c) amphiphilic chitosan. 37 Figure 3.8 The structure of peak from the 1H NMR of chitosan. 38 Figure 3.9 TEM image of CMNP 40 Figure 3.10 Size distribution of CMNPs with various volume ratios of MNPs to amphiphilic chitosan 41 Figure 3.11 Cell viability of HT-29 and NIH 3T3 cells co-cultured with CMNPs of concentration 25 (black), 50 (dark gray), 75 (light gray), and 100 μg/mL (white), respectively for 48 h. 42 Figure 3.12 Photomicrographic images of HT-29 cells treated with CMNPs complexed with pEGFP-N1 plasmid (100:1 weight ratio) without magnetic field (a), with magnetic field for 6 h (b), and with magnetic field for 12 h (c). The EGFP expression in HT-29 cells was measured 48 h after the treatment mentioned above. Scale bar is 250μm. 42 Figure 3.13 The relationship between absorbance (556 nm) and concentration of rose bengal 44 Figure 3.14 Absorbance of RB-CMNPs at 556 nm. 44 Figure 3.15 Confocal images of HT-29 cells treated with RB-CMNPs without the existence magnetic field (a), and in the presence of magnetic field (b). 45 Figure 3.16 Cell viability of HT-29 cells co-cultured with 2, 10, and 25 μg of RB-CMNPs and then exposed with 4 (black), 8 (gray), 16 (white) J/cm2 of 540±10 nm LED light for (a) 6 and (b) 12 h without magnetic field and for (c) 6 and (d) 12 h with magnetic field. 46 Figure 3.17 Singlet oxygen detection of HT-29 cells co-cultured with 2 (black), 10 (gray), and 25 (white) μg of RB-CMNPs for 6 h and 16 J of light power with and without magnetic field. 47 Figure 5.1 Schematic drawing of nanoparticle conjugated with NIR photosensitizer. 50 Figure 5.2 Principle of (a) one-photon absorption and (b) two-photos absorption. 50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光動力療法 | zh_TW |
| dc.subject | 磁性奈米粒子 | zh_TW |
| dc.subject | 兩相性幾丁聚醣 | zh_TW |
| dc.subject | 大腸癌HT-29細胞 | zh_TW |
| dc.subject | 基因轉殖 | zh_TW |
| dc.subject | 孟加拉玫瑰素 | zh_TW |
| dc.subject | Amphiphilic chitosan | en |
| dc.subject | Rose bengal | en |
| dc.subject | Gene transfection | en |
| dc.subject | HT-29 | en |
| dc.subject | Magnetic nanoparticles | en |
| dc.subject | Photodynamic therapy | en |
| dc.title | 兩相性幾丁聚醣包覆磁性奈米粒子之製備與生醫上的應用 | zh_TW |
| dc.title | Design and Synthesis of Magnetic Nanoparticles Capped by Amphiphilic Chitosan for Biomedical Application | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 彭慶安,王盈錦,陳克紹 | |
| dc.subject.keyword | 磁性奈米粒子,兩相性幾丁聚醣,大腸癌HT-29細胞,基因轉殖,孟加拉玫瑰素,光動力療法, | zh_TW |
| dc.subject.keyword | Magnetic nanoparticles,Amphiphilic chitosan,HT-29,Gene transfection,Rose bengal,Photodynamic therapy, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-99-1.pdf Restricted Access | 4.03 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
