Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46384
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱奕鵬
dc.contributor.authorChien-Hung Shihen
dc.contributor.author施建鴻zh_TW
dc.date.accessioned2021-06-15T05:06:23Z-
dc.date.available2010-08-02
dc.date.copyright2010-08-02
dc.date.issued2010
dc.date.submitted2010-07-26
dc.identifier.citation[1] A. W. Smith and A. Rohatgi, “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells, vol. 29, pp. 37-49, 1993.
[2] J. Zhao and Martin. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Elec. Dev., vol. 38, no. 8, Aug. 1991.
[3] E. Hecht, Optics, Addison Wesley Longman Inc., 3rd Edition, 1998.
[4] Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt., vol. 26, no. 6, Mar. 1987.
[5] S. S. Lo, C. C. Chen, F. Garwe, T. Pertch, “Broad-band anti-reflection coupler for a:Si thin-film solar cell,” J. Phys. D: Appl. Phys., vol. 40, pp. 754–758, 2007.
[6] A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells, vol. 54, pp. 333-342, 1998.
[7] N. F. Hartman and T. K. Gaylord, “Antireflection gold surface-relief gratings: experimental characteristics,” Appl. Opt., vol. 27, no. 17, Sep. 1988.
[8] S. H. Fidi, C. Matzke, L. Koltunski, and K. DeZette, “Absorption in thin Si films with randomly formed subwavelength structures,” Conf. Record, 31st IEEE PV Specialists Conf., pp. 1145-1148, Florida, May 2005.
[9] M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett., vol. 91, no. 8, 2007.
[10] K. Forberich, G. Dennler , M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films, vol. 516, no. 20, pp. 7167-7170, 2008.
[11] H. Nakaya, M. Nishida, Y. Takeda, S. Moriuchi, T. Tonegawa, T. Machida, and T. Nunoi, “Polycrystalline silicon solar cells with V-groove surface,” Sol. Energy Mater. Sol. Cells, vol. 34, pp. 219-225, 1994.
[12] T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 2647-2656, 2006.
[13] P. J. Sánchez-Illescas, P. Carpena, P. Bernaola, M. Sidrach-de-Cardona, A.V. Coronado, and J. L. Álvarez, “An analysis of geometrical shapes for PV module glass encapsulation,” Sol. Energy Mater. Sol. Cells, vol. 92, pp. 323-331, 2008.
[14] U. Blieske, T. Doege, P. Gayout, M. Neander, D. Neumarm, and A. Prat, “Light-trapping in solar modules using extra-white textured glass,” 3rd World Conf. on Photovoltaic Energy Conversion, Osaka, Japan, May 2003.
[15] F. Llopis and I. Tobías, “Influence of texture feature size on the optical performance of silicon solar cells,” Prog. Photovolt: Res. Appl., vol.13, no. 1, pp. 27-36, 2005.
[16] H. Iwata and T. Ohzone, “Photocarrier generation rate model of textured silicon solar cells,” Jpn. J. Appl. Phys., vol. 36, pp. L1311-L1314, 1997.
[17] M. A. Green, “Two new efficient crystalline silicon light-trapping textures,” Prog. Photovolt: Res. Appl., vol. 7, pp. 317-320, 1999.
[18] E. Yablonotitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Elec. Dev., vol. 29, no. 2, pp. 300-305, 1982.
[19] T. Maruyama, J. Bandai, and S. Osako, “Reflection at transparent V-grooved surface,” Sol. Energy Mater. Sol. Cells, vol. 64, pp. 261-268, 2000.
[20] P. Campbell, S. R. Wenham, and M. A. Green, “Light trapping and reflection control with tilted pyramids and grooves,” Conf. Record, 20st IEEE PV Specialists Conf., vol. 1, pp. 713-716, New York, Sept. 1988.
[21] J. M. Gee, W. K. Schubert, H. L. Tardy, and T. D. Hund, “The effect of encapsulation on the reflectance of photovoltaic modules using textured multicrystalline-silicon solar cells,” 1st World Conf. on Photovoltaic Energy Conversion, Hawaii, Dec. 1994.
[22] J. D. Hylton, A. R. Burgers, and W. C. Sinke, “Alkaline etching for reflectance reduction in multicrystalline silicon solar cells,” J. Electrochem. Soc., vol. 151, no. 6, pp. G408-G247, 2004.
[23] C. M. Yang, J. C. Yu, B. R. Wu, S. Y. Lien, D. S. Wuu, P. Han, and R. H. Horng, “Texturing structure optimization of crystalline silicon solar cells using ray-tracing simulation and anisotropic etching techniques,” J. Mater. Sci., vol. 38, no. 4, pp. 201-205, 2006.
[24] R. Brendel and D. Scholten, “Modeling light trapping and electronic transport of waffle-shaped crystalline thin-film Si solar cells,” Appl. Phys. A., vol. 69, no. 2, pp. 201-213, 1999.
[25] J. M. Rodríquez, I. Tobías, and A. Luque, “Random pyramidal texture modeling,” Sol. Energy Mater. Sol. Cells, vol. 45, pp. 241-253, 1997.
[26] S. K. Rotich, J. G. Smith, A. G. R. Evans, and A. Brunnschweiler, “Micromachined thin solar cells with a novel light trapping scheme,” J. Micromech. Microeng., vol. 8, pp. 134-137, 1998.
[27] Y. G. Xiao, M. Lestrade, Z. Q. Li, and Z. M. S. Li, “Modeling of Si-based solar cells with V-grooved surface texture by crosslight APSYS,” Proc. SPIE, vol. 69, no. 2, pp. 201-213, 2007.
[28] D. M. Brunette, G. S. Kenner, and T. R. L. Gould, “Grooved titamium surfaces orient growth and migration of cells from human gingival explants,” J. Dent. Res., vol. 62, no. 10, pp. 1045-1048, Oct. 1983.
[29] M. A. Green and M. Keevers, “Optical properties of intrinsic silicon at 300K,” Prog. Photovoltaics, vol. 3, no. 3, pp. 189-192, 1995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46384-
dc.description.abstract抗反射在太陽能電池領域中是一重要的課題,而表面粗化為其中一種方法,在電池的上表面蝕刻出週期性的幾何結構,且其大小需大於光波長數倍,主要的效果為增加光在結構中的反射次數,進而使光入射的機會增加,減少光在電池上表面的反射率。
在本論文中,我們針對兩種主要的粗化結構,V型溝槽及正金字塔陣列作分析,推導出能描述反射次數和路徑的分析式。其中光源採平行光,並考慮垂直入射和傾斜入射結構,在傾斜入射V型溝槽時再細分成平行週期與平行溝槽傾斜兩種情況,推導過程除了使用幾何光學外,也引入座標轉換。而從V型溝槽的分析中,我們更發現正金字塔陣列可由V型溝槽來近似,使得正金字塔陣列的分析式因此簡化,只需要平行週期與平行溝槽傾斜入射V型溝槽的線性組合即可。
我們也從分析式計算出減少的反射率,並與商業軟體TracePro作比較,驗證分析式的正確性,再與未作表面粗化的平板結構作比較,從中可確定使光線平行溝槽傾斜入射V型溝槽為抗反射效果最好的方式,能有效降低光在太陽能電池上表面的反射率,且高傾斜入射角的反射率也能降至5%以下。最後再將分析式擴展到與折射率隨光波長變化的intrinsic silicon材質,以及計算加入抗反射薄膜後的反射率,並從中得到了最佳的薄膜厚度。
zh_TW
dc.description.abstractSurface texturing is a method to make anti-reflection in solar cells. To form geometric structure on top surface of solar cells by etching can increase number of reflections and reduce reflectivity. In addition, the scale of structure must be several times larger than light wavelength.
In this paper, we analyze two texturing structures of V-groove and upright pyramid array. And we derive analytical formula which can describe number of reflections and optical path. In analyzation we use collimated light to be light source and let rays incident texturing structures normally and obliquely. For oblique incidence on V-groove, we define two conditions according to plane-of-incidence of incident lights which are lying in x-y and y-z plane. Above analyzations we use geometric optics and coordinates transformation of theories. In analytical process, we know that upright pyramid array can be formd by V-groove approximately. This idea let we simplify the analyzations of upright pyramid array.
We also calculate reduct reflectivity from analytical formula. And we compare its solutions with simulation results of TracePro to check the accuracy of analytical formula. We get the results that oblique incidence on V-groove in y-z plane has less reflectivity and it is below 5% as larger tilted angles. Finally, we extend analytical formula to other complex conditions. Like intrinsic silicon which refractive index changes with light wavelength and adding thinfilm on surfaces of texturing structure. We can also get optimal thickness by calculating reflectivity of adding thinfilm.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:06:23Z (GMT). No. of bitstreams: 1
ntu-99-R96941073-1.pdf: 7982026 bytes, checksum: 1a09d6443c11da819ff988aa972a32fb (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 IV
附圖目錄 VI
第一章 背景介紹 1
1.1 概要……………………………………………………… 1
1.2 文獻回顧………………………………………………… 1
1.3 章節大綱………………………………………………… 5
第二章 理論基礎 6
2.1 幾何光學………………………………………………… 6
2.2 Fresnel’ s law…………………………………………….. 9
2.3 光線追跡………………………………………………… 15
第三章 數值分析 21
3.1 V型溝槽………………………………………………… 22
3.1.1 正向入射………………………………………….. 23
3.1.2 平行週期的傾斜入射…………………………….. 26
3.1.3 平行溝槽的傾斜入射…………………………….. 35
3.2 正金字塔陣列…………………………………………… 39
3.2.1 正向入射………………………………………….. 39
3.2.2 傾斜入射………………………………………….. 41
第四章 模擬與討論 43
4.1 TracePro…………………………………………………. 43
4.2 模擬結果………………………………………………… 45
4.2.1 平板結構…………………………………………… 45
4.2.2 正向入射V型溝槽………………………………… 47
4.2.3 平行週期傾斜入射V型溝槽……………………… 50
4.2.4 平行溝槽傾斜入射V型溝槽……………………… 57
4.2.5 正向入射正金字塔陣列………………………….... 62
4.2.6 傾斜入射正金字塔陣列………………………….... 64
4.3 綜合比較…………………………………………………. 69
4.3.1 V型溝槽…………………………………………… 69
4.3.2 正金字塔陣列……………………………………… 78
4.4 應用………………………………………………………. 81
4.4.1 本質矽……………………………………………… 81
4.4.2 加入抗反射薄膜…………………………………… 86
4.5 討論………………………………………………………. 92
第五章 結論 96
參考文獻 97
dc.language.isozh-TW
dc.subjectTraceProzh_TW
dc.subject抗反射zh_TW
dc.subject太陽能電池zh_TW
dc.subject表面粗化zh_TW
dc.subjectV型溝槽zh_TW
dc.subject平行週期zh_TW
dc.subject平行溝槽zh_TW
dc.subject正金字塔陣列zh_TW
dc.subjectupright pyramid arrayen
dc.subjectTraceProen
dc.subjectAnti-reflectionen
dc.subjectsolar cellsen
dc.subjectsurface texturingen
dc.subjectV-grooveen
dc.title太陽能電池的表面抗反射結構之幾何分析zh_TW
dc.titleGeometry Analysis of Surface Anti-reflection Structures for Solar Cellsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林晃巖,王子建
dc.subject.keyword抗反射,太陽能電池,表面粗化,V型溝槽,平行週期,平行溝槽,正金字塔陣列,TracePro,zh_TW
dc.subject.keywordAnti-reflection,solar cells,surface texturing,V-groove,upright pyramid array,TracePro,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2010-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
7.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved