請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46379完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳丕燊(Pisin, Chen) | |
| dc.contributor.author | Yu-Yen Chang | en |
| dc.contributor.author | 張雨晏 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:06:10Z | - |
| dc.date.available | 2012-07-28 | |
| dc.date.copyright | 2010-07-28 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-27 | |
| dc.identifier.citation | [1] M. J. Disney, J. D. Romano, D. A. Garcia-Appadoo, A. A. West, J. J. Dalcanton, and L. Cortese. Galaxies appear simpler than expected. Nature, 455:1082–1084, 2008.
[2] F. Zwicky. On the Masses of Nebulae and of Clusters of Nebulae. The Astro- physical Journals, 86:217, October 1937. [3] J. C. Kapteyn. First Attempt at a Theory of the Arrangement and Motion of the Sidereal System. The Astrophysical Journals, 55:302, May 1922. [4] J. H. Oort. The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Bulletin of the Astronomical Institutes of the Netherlands, 6:249, August 1932. [5] V. C. Rubin and W. K. Ford, Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. The Astrophysical Journals, 159:379, February 1970. [6] V. C. Rubin, W. K. J. Ford, and N. . Thonnard. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/. The Astrophysical Journals, 238:471–487, June 1980. [7] S. M. Kent. Dark matter in spiral galaxies. I - Galaxies with optical rotation curves. The Astronomical Journal, 91:1301–1327, June 1986. [8] A. A. Penzias and R. W. Wilson. A Measurement of Excess Antenna Temperature at 4080 Mc/s. The Astrophysical Journals, 142:419–421, July 1965. [9] D. J. Schlegel, D. P. Finkbeiner, and M. Davis. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds. The Astrophysical Journals, 500:525, June 1998. [10] G. F. Smoot et al. Structure in the COBE differential microwave radiometer first-year maps. The Astrophysical Journals, 396:L1–L5, September 1992. [11] C. B. Netterfield et al. A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background. The Astrophysical Journals, 571:604–614, June 2002. [12] E. Komatsu et al. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. ArXiv e-prints, January 2010. [13] C. L. Bennett et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. The Astro- physical Journalss, 148:1–27, September 2003. [14] C. L. Bennett et al. Cosmic temperature fluctuations from two years of COBE differential microwave radiometers observations. The Astrophysical Journals, 436:423–442, December 1994. [15] E. Kmatsuo et al. Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. The Astrophysical Journalss, 180:330–376, February 2009. [16] J. Dunkley et al. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Bayesian Estimation of Cosmic Microwave Background Polarization Maps. The Astrophysical Journals, 701:1804–1813, August 2009. [17] C. L. Bennett et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission. The Astrophysical Journalss, 148:97–117, September 2003. [18] A. G. Riess et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116:1009– 1038, September 1998. [19] A. Kravtsov. Dark Matter Substructure and Dwarf Galactic Satellites. Ad- vances in Astronomy, 2010, 2010. [20] J. R. Primack. Cosmology: small-scale issues. New Journal of Physics, 11(10):105029, October 2009. [21] A. Klypin, A. V. Kravtsov, O. Valenzuela, and F. Prada. Where Are the Missing Galactic Satellites? The Astrophysical Journals, 522:82–92, September 1999. [22] B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, and P. Tozzi. Dark Matter Substructure within Galactic Halos. The Astrophysical Journalsl, 524:L19–L22, October 1999. [23] J. Sommer-Larsen and A. Dolgov. Formation of Disk Galaxies: Warm Dark Matter and the Angular Momentum Problem. The Astrophysical Journals, 551:608–623, April 2001. [24] P. J. E. Peebles. The Void Phenomenon. The Astrophysical Journals, 557:495– 504, August 2001. [25] D. E. Friedmann. Dark matter redistribution explains how galaxies grow in size and develop characteristic rotation curves. ArXiv e-prints, December 2009. [26] W. J. G. de Blok and S. S. McGaugh. The dark and visible matter content of low surface brightness disc galaxies. Monthly Notices of the Royal Astronomical Society, 290:533–552, September 1997. [27] J. J. Dalcanton and C. J. Hogan. Halo Cores and Phase-Space Densities: Observational Constraints on Dark Matter Physics and Structure Formation. The Astrophysical Journals, 561:35–45, November 2001. [28] J. R. Primack and G. R. Blumenthal. What is the dark matter? - Implications for galaxy formation and particle physics. In J. Audouze & J. Tran Thanh Van, editor, NATO ASIC Proc. 117: Formation and Evolution of Galaxies and Large Structures in the Universe, pages 163–183, 1984. [29] J. R. Bond, J. Centrella, A. S. Szalay, and J. R. Wilson. Dark matter and shocked pancakes. In J. Audouze & J. Tran Thanh Van, editor, NATO ASIC Proc. 117: Formation and Evolution of Galaxies and Large Structures in the Universe, pages 87–99, 1984. [30] M. Viel, J. Lesgourgues, M. G. Haehnelt, S. Matarrese, and A. Riotto. Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman- forest. Physical Review D, 71(6):063534, March 2005. [31] D. O. Caldwell and R. N. Mohapatra. Neutrino mass explanations of solar and atmospheric neutrino deficits and hot dark matter. Physical Review D, 48:3259–3263, October 1993. [32] S. Yoshida, G. Sigl, and S. Lee. Extremely High Energy Neutrinos, Neutrino Hot Dark Matter, and the Highest Energy Cosmic Rays. Physical Review Letters, 81:5505–5508, December 1998. [33] P. Bode, J. P. Ostriker, and N. Turok. Halo Formation in Warm Dark Matter Models. The Astrophysical Journals, 556:93–107, July 2001. [34] S. Dodelson and L. M. Widrow. Sterile neutrinos as dark matter. Physical Review Letters, 72:17–20, January 1994. [35] K. Abazajian, G. M. Fuller, and M. Patel. Sterile neutrino hot, warm, and cold dark matter. Physical Review D, 64(2):023501, July 2001. [36] M. R. Merrifield. The rotation curve of the Milky Way to 2.5 R0 from the thickness of the H I layer. The Astronomical Journal, 103:1552–1563, May 1992. [37] P. Cuddeford and J. J. Binney. Galaxies and magnetic fields. Nature, 365:20, September 1993. 60 [38] R. H. Sanders. Mass discrepancies in galaxies - Dark matter and alternatives. Astronomy and Astrophysics Review, 2:1–28, 1990. [39] V. Springel et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature, 435:629–636, June 2005. [40] O. J. Eggen, D. Lynden-Bell, and A. R. Sandage. Evidence from the motions of old stars that the Galaxy collapsed. The Astrophysical Journals, 136:748, November 1962. [41] L. Searle and R. Zinn. Compositions of halo clusters and the formation of the galactic halo. The Astrophysical Journals, 225:357–379, October 1978. [42] S. D. M. White and C. S. Frenk. Galaxy formation through hierarchical clustering. The Astrophysical Journals, 379:52–79, September 1991. [43] S. Cole, C. G. Lacey, C. M. Baugh, and C. S. Frenk. Hierarchical galaxy formation. Monthly Notices of the Royal Astronomical Society, 319:168–204, November 2000. [44] C. M. Baugh. A primer on hierarchical galaxy formation: the semi-analytical approach. Reports on Progress in Physics, 69:3101–3156, December 2006. [45] J. M. Dickey and F. J. Lockman. H I in the Galaxy. Annual review of astronomy and astrophysics, 28:215–261, 1990. [46] S. R. Furlanetto, S. P. Oh, and F. H. Briggs. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe. Physics Reports, 433:181– 301, October 2006. [47] R. Giovanelli et al. The Arecibo Legacy Fast ALFA Survey. III. H I Source Catalog of the Northern Virgo Cluster Region. The Astronomical Journal, 133:2569–2583, 2007. [48] A. Saintonge et al. The Arecibo Legacy Fast Alfa Survey. V. The H I Source Catalog of the Anti-Virgo Region at = 27 degrees. The Astronomical Journal, 135:588–604, 2008. [49] B. R. Kent et al. The Arecibo Legacy Fast Alfa Survey. VI. Second HI Source Catalog of the Virgo Cluster Region. The Astronomical Journal, 136:713–724, 2008. [50] L. Staveley-Smith et al. The Parkes 21 CM multibeam receiver. Publications of the Astronomical Society of Australia, 13:243–248, November 1996. [51] J. L. Rosenberg, S. E. Schneider, and J. Posson-Brown. Gas and Stars in an H I-Selected Galaxy Sample. The Astronomical Journal, 129:1311–1330, March 2005. [52] M. P. Haynes and R. Giovanelli. Neutral hydrogen in isolated galaxies. IV - Results for the Arecibo sample. The Astronomical Journal, 89:758–800, June 1984. [53] M. J. Meyer et al. The HIPASS catalogue - I. Data presentation. Monthly Notices of the Royal Astronomical Society, 350:1195–1209, June 2004. [54] K. Abazajian et al. The Astronomical Journal, 128:502–512, July 2004. [55] D. A. Garcia-Appadoo, A. A. West, J. J. Dalcanton, L. Cortese, and M. J. Disney. Correlations among the properties of galaxies found in a blind HI survey, which also have SDSS optical data. Monthly Notices of the Royal Astronomical Society, 394:340–356, 2009. [56] A. A. West, D. A. Garcia-Appadoo, J. J. Dalcanton, M. J. Disney, C. M. Rockosi, and ˇZ. Ivezi´c. H I-Selected Galaxies in the Sloan Digital Sky Survey. II. The Colors of Gas-Rich Galaxies. The Astronomical Journal, 138:796–807, September 2009. [57] A. A. West, D. A. Garcia-Appadoo, J. J. Dalcanton, M. J. Disney, C. M. Rockosi, Ž Ivezić, M. C. Bentz, and J. Brinkmann. H I-Selected Galaxies in the Sloan Digital Sky Survey. I. Optical Data. The Astronomical Journal, 139:315–328, 2010. [58] K. N. Abazajian et al. The Astrophysical Journalss, 182:543–558, June 2009. [59] J. K. Adelman-McCarthy et al. The SDSS Photometric Catalog, Release 7 (Adelman-McCarthy, 2009). VizieR Online Data Catalog, 2294, June 2009. [60] M. F. Skrutskie et al. The Two Micron All Sky Survey (2MASS). The Astro- nomical Journal, 131:1163–1183, February 2006. [61] V. Petrosian. Surface brightness and evolution of galaxies. The Astrophysical Journals, 209:L1–L5, October 1976. [62] M. R. Blanton et al. The Luminosity Function of Galaxies in SDSS Commissioning Data. The Astronomical Journal, 121:2358–2380, May 2001. [63] N. Yasuda et al. Galaxy Number Counts from the Sloan Digital Sky Survey Commissioning Data. The Astronomical Journal, 122:1104–1124, September 2001. [64] A. A. West. Hi selected galaxies in the sloan digital sky survey. PhD thesis, 2005. [65] J. R. Fisher and R. B. Tully. Neutral hydrogen observations of a large sample of galaxies. Astrophysical Journal Supplement Series, 47:139–200, December1981. [66] A. Bosma. The distribution and kinematics of neutral hydrogen in spiral galax- ies of various morphological types. PhD thesis, PhD Thesis, Groningen Univ., 1978. [67] I. T. Jolliffe. Principal component analysis. Springer, 1986. [68] R. A. Johnson and D.W. Wichern. Applied multivariate statistical analysis. Pearson, 2007. [69] P. C. van der Kruit. The three-dimensional distribution of light and mass in disks of spiral galaxies. Astronomy & Astrophysics, 192:117–127, March 1988. [70] Blanton et al. The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1. The Astrophysical Journals, 592:819–838, August 2003. [71] G. Gavazzi, D. Pierini, and A. Boselli. The phenomenology of disk galaxies. Astronomy & Astrophysics, 312:397–408, 1996. [72] G. de Vaucouleurs. Recherches sur les Nebuleuses Extragalactiques. Annales d’Astrophysique, 11:247, January 1948. [73] J. L. Sersic. Atlas de galaxias australes. 1968. [74] J. Kormendy and S. Djorgovski. Surface photometry and the structure of elliptical galaxies. Annual Review of Astronomy and Astrophysics, 27:235– 277, 1989. [75] S. Djorgovski and M. Davis. Fundamental properties of elliptical galaxies. The Astrophysical Journals, 313:59–68, February 1987. [76] A. Dressler, D. Lynden-Bell, D. Burstein, R. L. Davies, S. M. Faber, R. Terlevich, and G. Wegner. Spectroscopy and photometry of elliptical galaxies. I - A new distance estimator. The Astrophysical Journals, 313:42–58, February 1987. [77] J. Kormendy. Brightness distributions in compact and normal galaxies. II - Structure parameters of the spheroidal component. The Astrophysical Jour- nals, 218:333–346, December 1977. [78] S. M. Faber and R. E. Jackson. Velocity dispersions and mass-to-light ratios for elliptical galaxies. The Astrophysical Journals, 204:668–683, March 1976. [79] J. J. Dalcanton, D. N. Spergel, and F. J. Summers. The Formation of Disk Galaxies. The Astrophysical Journals, 482:659–676, 1997. [80] G. de Vaucouleurs. Integrated Colors of Bright Galaxies in the u, b, V System. The Astrophysical Journalss, 5:233, January 1961. [81] E. F. Bell et al. Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z˜1. The Astrophysical Journals, 608:752–767, June 2004. [82] M. R. Blanton, M. Geha, and A. A. West. Testing Cold Dark Matter with the Low-Mass Tully-Fisher Relation. The Astrophysical Journals, 682:861–873, 2008. [83] R. B. Tully and J. R. Fisher. A new method of determining distances to galaxies. Astronomy & Astrophysics, 54:661–673, February 1977. [84] M. Bernardi, F. Shankar, J. B. Hyde, S. Mei, F. Marulli, and R. K. Sheth. Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function of morphological type. Monthly Notices of the Royal Astronomical Society, page 436, March 2010. [85] K. Schawinski et al. Galaxy Zoo: a sample of blue early-type galaxies at low redshift. Monthly Notices of the Royal Astronomical Society, 396:818–829, June 2009. [86] A. van der Wel. The Dependence of Galaxy Morphology and Structure on Environment and Stellar Mass. The Astrophysical Journals, 675:L13–L16, March 2008. [87] R. J. Cool et al. Luminosity Function Constraints on the Evolution of Massive Red Galaxies since z ˜ 0.9. The Astrophysical Journals, 682:919–936, August 2008. [88] M. Fukugita et al. A Catalog of Morphologically Classified Galaxies from the Sloan Digital Sky Survey: North Equatorial Region. The Astronomica Journal, 134:579–593, August 2007. [89] T. Goto, M. Yagi, M. Tanaka, and S. Okamura. Evolution of the colour-radius and morphology-radius relations in SDSS galaxy clusters. Monthly Notices of the Royal Astronomical Society, 348:515–518, February 2004. [90] I. Kayo et al. Three-Point Correlation Functions of SDSS Galaxies in Redshift Space: Morphology, Color, and Luminosity Dependence. Publications of the Astronomical Society of Japan, 56:415–423, June 2004. [91] C. Hikage et al. Minkowski Functionals of SDSS Galaxies I : Analysis of Excursion Sets. Publications of the Astronomical Society of Japan, 55:911– 931, October 2003. [92] S. Kazantzidis, J. S. Bullock, A. R. Zentner, A. V. Kravtsov, and L. A. Moustakas. Cold Dark Matter Substructure and Galactic Disks. I. Morphological Signatures of Hierarchical Satellite Accretion. The Astrophysical Journals, 688:254–276, November 2008. [93] H. J. Mo, S. Mao, and S. D. M. White. The formation of galactic discs. Monthly Notices of the Royal Astronomical Society, 295:319–336, 1998. [94] C. Park, Y.-Y. Choi, M. S. Vogeley, J. R. Gott, III, and M. R. Blanton. Environmental Dependence of Properties of Galaxies in the Sloan Digital Sky Survey. The Astrophysical Journals, 658:898–916, April 2007. [95] P. J. E. Peebles and A. Nusser. Nearby Galaxies and Problems of Structure Formation; a Review. ArXiv e-prints, January 2010. [96] F. Fontanot, G. De Lucia, P. Monaco, R. S. Somerville, and P. Santini. The many manifestations of downsizing: hierarchical galaxy formation models confront observations. Monthly Notices of the Royal Astronomical Society, 397:1776–1790, August 2009. [97] J. Kormendy, D. B. Fisher, M. E. Cornell, and R. Bender. Structure and Formation of Elliptical and Spheroidal Galaxies. The Astrophysical Journalss, 182:216–309, May 2009. [98] A. J. Bower, R. G. Benson, R. Malbon, J. C. Helly, C. S. Frenk, C. M. Baugh, S. Cole, and C. G. Lacey. Breaking the hierarchy of galaxy formation. Monthly Notices of the Royal Astronomical Society, 370:645–655, August 2006. [99] M. Bernardi, R. C. Nichol, R. K. Sheth, C. J. Miller, and J. Brinkmann. Evolution and Environment of Early-Type Galaxies. The Astronomical Journal, 131:1288–1317, March 2006. [100] J. Kormendy and R. C. Kennicutt, Jr. Secular Evolution and the Formation of Pseudobulges in Disk Galaxies. Annual Review of Astronomy and Astro- physics, 42:603–683, September 2004. [101] M. S. Longair. Galaxy formation. Springer, 1998. [102] M. Nagashima, C. G. Lacey, T. Okamoto, C. M. Baugh, C. S. Frenk, and S. Cole. The metal enrichment of elliptical galaxies in hierarchical galaxy formation models. Monthly Notices of the Royal Astronomical Society, 363:L31– L35, October 2005. [103] C. L. Carilli et al. Imaging the Molecular Gas in a Submillimeter Galaxy at z = 4.05: Cold Mode Accretion or a Major Merger? The Astrophysical Journals, 714:1407–1417, May 2010. [104] A. Dekel et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature, 457:451–454, January 2009. [105] D. Kereš, N. Katz, M. Fardal, R. Davé, and D. H. Weinberg. Galaxies in a simulated lambda-CDM Universe - I. Cold mode and hot cores. Monthly Notices of the Royal Astronomical Society, 395:160–179, May 2009. [106] D. Kereš, N. Katz, D. H. Weinberg, and R. Davé. How do galaxies get their gas? Monthly Notices of the Royal Astronomical Society, 363:2–28, October 2005. [107] C. L. Carilli and M. S. Yun. The Scatter in the Relationship between Redshift and the Radio-to-Submillimeter Spectral Index. The Astrophysical Journals, 530:618–624, February 2000. [108] S. C. Chapman, A. W. Blain, R. J. Ivison, and I. R. Smail. A median redshift of 2.4 for galaxies bright at submillimetre wavelengths. Nature, 422:695–698, April 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46379 | - |
| dc.description.abstract | 我們研讀了星系的參數,並且尋找這些參數間的關係。我們的樣本來自阿雷西波無線電波望遠鏡中的L波段饋入陣列 (ALFALFA),以及澳洲帕可斯天文台無線電望遠鏡的中性氫巡天計畫 (HIPASS)。從這兩座電波望遠鏡的資料庫,我們可以得到星系的中性氫含量和動態資訊。並且加上史隆數位巡天計畫 (SDSS)所得到的光學特性,和二微米巡天計畫 (2MASS)所得到的近紅外光特性,對於星系的參數做近一步的研究。我們使用主成份分析 (PCA)尋找觀測參數間的關係。我們的目標是了解星系的結構和及暗質在星系形成和星系動力學所伴演的角色。我們證實了2008年迪士尼等人刊登在自然期刊的研究成果,也就是,除了顏色以外,其他五個觀測參數彼此間有很強的關係。透過主成份分析,我們更可以找到足以代表這些參數的一個主成份。這樣的結果暗示著,只需要有一個物理的參數,就可以決定星系的動力學及結構。我們討論了這個結果在暗質理論中的含意。 | zh_TW |
| dc.description.abstract | We have studied global parameters of galaxies to find simple relationships among them. We use database from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) and HI Parkes All-Sky Survey for the atomic gas properties and dynamics, with the Sloan Digital Sky Survey (SDSS) for the optical properties of galaxies, and the Two Micron All Sky Survey for the near-infrared properties. We conduct Principal Component Analyses (PCA) to find relations among observational variables. The goal is to gain insight into the structure of galaxies and to infer the role of dark matter in galaxy formation and galactic dynamics. We confirm the recent finding of Disney et al. (Nature, 2008) with a much larger number of samples. That is, except the color, the other 5 parameters are correlated and are governed by just one principal component. This implies that only one physical parameter can in principle determine all the observed dynamics and structure of the galaxies. We discuss the implication of this result on the cold dark matter. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:06:10Z (GMT). No. of bitstreams: 1 ntu-99-R96942019-1.pdf: 11332041 bytes, checksum: fb24ced5df37ce360e1932677fcd6fba (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Acknowledgement I
Abstract (Chinese) II Abstract (English) III Contents IV List of Figures VI List of Tables VIII 1 Introduction 1 2 A Brief Introduction to Cosmology 3 2.1 Our Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Observational Evidence . . . . . . . . . . . . . . . . . . . . . . 4 2.2.2 Lambda Cold Dark Matter Model . . . . . . . . . . . . . . . . 7 2.2.3 Other Dark Matter Candidates . . . . . . . . . . . . . . . . . 8 2.3 Hierarchical Structure Formation . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Galactic Scale Evolution of Structure . . . . . . . . . . . . . . 9 3 Observational Consideration 12 3.1 Radio Astronomy and HI 21cm Spectrum . . . . . . . . . . . . . . . . 13 3.2 Optical Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Near-Infrared Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 Database and Variables 15 4.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1.1 ALFALFA: Arecibo Legacy Fast Arecibo L-band Feed Array . 15 4.1.2 HIPASS: HI Parkes All-Sky Survey . . . . . . . . . . . . . . . 16 4.1.3 SDSS: Sloan Digital Sky Survey . . . . . . . . . . . . . . . . . 16 4.1.4 2MASS: Two Micron All Sky Survey . . . . . . . . . . . . . . 17 4.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2.1 Half-light Radius (R50) . . . . . . . . . . . . . . . . . . . . . . 19 4.2.2 90%-light Radius (R90) . . . . . . . . . . . . . . . . . . . . . . 20 4.2.3 HI Mass (MHI) . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2.4 Dynamical Mass (Md) . . . . . . . . . . . . . . . . . . . . . . 21 4.2.5 Luminosity (L) . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.6 Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Principal Component Analysis 23 5.1 Calculate Principal Components . . . . . . . . . . . . . . . . . . . . . 23 5.2 Criterions of PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6 Results 27 6.1 Statistics and Correlations . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2 PCA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.3 Disk and Spheroid Galaxies . . . . . . . . . . . . . . . . . . . . . . . 35 6.4 Comparison with the Known Relations . . . . . . . . . . . . . . . . . 37 6.5 The Most Uncorrelated Variable: Color . . . . . . . . . . . . . . . . . 39 7 Summary and Discussion 40 A Appendix A: Use ALFALFA/HIPASS as our samples 42 A.1 Statistics and Correlations . . . . . . . . . . . . . . . . . . . . . . . . 43 A.2 PCA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A.3 Disk and Spheroid Galaxies . . . . . . . . . . . . . . . . . . . . . . . 46 | |
| dc.language.iso | en | |
| dc.subject | 主成份分析 | zh_TW |
| dc.subject | 冷暗質 | zh_TW |
| dc.subject | 中性氫巡天 | zh_TW |
| dc.subject | 階層性結構形成 | zh_TW |
| dc.subject | 星系 | zh_TW |
| dc.subject | cold dark matter | en |
| dc.subject | principal component analysis | en |
| dc.subject | hierarchical structure formation | en |
| dc.subject | HI survey | en |
| dc.subject | galaxies | en |
| dc.title | 星系參數間的相關性及暗質在結構形成的角色 | zh_TW |
| dc.title | The Correlation between Global Parameters
of Galaxies and its Implications on the Role of Dark Matter in Structure Formation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王為豪(Wei-Hao Wang) | |
| dc.contributor.oralexamcommittee | 林俐暉(Li-Hwai Lin),闕志鴻(Tzihong Chiueh) | |
| dc.subject.keyword | 星系,中性氫巡天,階層性結構形成,冷暗質,主成份分析, | zh_TW |
| dc.subject.keyword | galaxies,HI survey,hierarchical structure formation,cold dark matter,principal component analysis, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 11.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
