Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46347
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李伯訓
dc.contributor.authorFa-Jen Wangen
dc.contributor.author王法仁zh_TW
dc.date.accessioned2021-06-15T05:04:44Z-
dc.date.available2015-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-07-27
dc.identifier.citation1. Akgungor G, Akkayan B. Influence of dentin bonding agents and polymerization modes on the bond strength between translucent fiber posts and three dentine regions within a post-space. J Prosthet Dent 2006;95:368-378.
2. Alharbi F, Nathanson D. In vitro assessment of retention of four esthetic dowels to resin core foundation and teeth. J Prosthet Dent 2003;90:547-555.
3. Anusavice KJ. Phillips’ Science of Dental Materials. Philadelphia: Saunders, 2003. 11th edition.
4. Asmussen E, Peutzfeldt A, Heitmann T. Stiffness, elastic limit, and strength of newer types of endodontic posts. J Dent 1999;27:275-278.
5. Assif D, Ferber A. Retention of dowels using a composite resin as a cementing medium. J Prosthet Dent 1982;48:292-296.
6. Baldissara P, Zicari F, Valandro LF, Scotti R. Effect of root canal treatments on quartz fiber posts bonding to root dentin. J Endod 2006;32:985-988.
7. Bell AM, Lassila LV, Kangasniemi I, Vallittu PK. Bonding of fibre-reinforced composite post to root canal dentin. J Dent 2005;33:533-539.
8. Bitter K, Meyer LH, Priehn K, Kanjuparambil JP, Neumann K, Kielbassa AM. Effects of luting agent and thermocycling on bond strengths to root canal dentine. Int Endod J 2006;39:809-818.
9. Boschian PL, Cavalli G, Bertani P, Gagliani M. Adhesive post-endodontic restorations with fiber posts: push-out tests and SEM observations. Dent Mater 2002;18:596-602.
10. Bouillaguet S, Troesch S, Wataha JC, Krejci I, Meyer JM, Pashley DH. Microtensile bond strength between adhesive cements and root canal dentin. Dent Mater 2003;19:199-205.
11. Burns DR, Douglas HB, Moon PC. Comparison of the retention of endodontic posts after preparation with EDTA. J Prosthet Dent 1993;69:262-266.
12. Butz F, Lennon AM, Heydecke G, Strub JR. Survival rate and fracture strength of endodontically treated maxillary incisors with moderate defects restored with different post and- core systems: an in vitro study. Int J Prosthodont 2001;14:58-64.
13. Dai CA, Lee YH, Chiu AC, Tsu TA, Lin KJ, Chen KL, Liu MW. Strengthening interfaces between biaxial oriented PET and PSMA: Effects of nitrogen plasma and bonding treatments.Polymer 2006;47:8583-8589.
14. Cohen BI, Pagnillo M, Musikant BL, Deutsch AS. Comparison of the retentive and photoelastic properties of two prefabricated endodontic post systems. J Oral Rehabil 1999;26:488-494.
15. Creton C, Kramer EJ, Brown HR. Macromolecules 1992;25:3075-3081.
16. Cury AH, Goracci C, Navarro ML, Sadek FT, Tay FR, Ferrari M. Effect of hygroscopic expansion on the push-out resistance of glass ionomer-based cements used for the luting of glass fiber posts. J Endod 2006;32:537-540.
17. Dervaux B, Van Camp W, Van Renterghem L, Du Prez FE. Synthesis of poly(isobornyl acrylate) containing copolymers by atom transfer radical polymerization. J Polym Sci Part A: Polym Chem 2008;46:1649-1661.
18. De Munck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, et al. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res 2005;84:118-132.
19. Dietschi D, Romelli M, Goretti A. Adaptation of adhesive posts and cores to dentin after fatigue testing. Int J Prosthodont 1997;10:498-507.
20. De Durao Mauricio PJBT, Gonza lez-Lopez S, Aguilar- Mendoza JA, Fe lix S, Gonzalez-Rodriguez MP. Comparison of regional bond strength in root thirds among fiber-reinforced posts luted with different cements. J Biomed Mater Res B: Applied Biomaterials 2007.
21. Duret B, Reynaud M, Duret F. A new concept of corono-radicular reconstruction: the Composipost. Chir Dent Fr 1990;60:69-77.
22. Ferrari M, Vichi A, Mannocci F, Mason PN. Retrospective study of the clinical performance of fiber posts. Am J Dent 2000;13:9-13.
23. Ferrari M, Goracci C, Sadek FT, Monticelli F, Tay FR. An investigation of the interfacial strengths of methacrylate resin-based glass fiber post-core buildups. J Adhes Dent 2006;8:239-245.
24. Fogel, HM. Microleakage of posts used to restore endodontically treated teeth. J Endod 1995;21:376-379.
25. Fokkinga WA, Kreulen CM, Vallittu PK, Creugers NHJ. A structured analysis of in vitro failure loads and failure modes of fiber, metal and ceramic post-and-core systems. Int J Prosthodont 2004;17:476-482.
26. Fox K, Gutteridge DL. An in vitro study of coronal microleakage in root-canal-treated teeth restored by the post and core technique. Int Endod J 1997;30:361-368.
27. Freilich MA, Karmaker AC, Burstone CJ, Goldberg AJ. Development and clinical applications of a light-polymerized fiberreinforced composite. J Prosthet Dent 1998;80:311-318.
28. Gaston BA, West LA, Liewehr FR, Fernandes C, Pashley DH. Evaluation of regional bond strength of resin cement to endodontic surfaces. J Endod 2001;27:321-324.
29. Giachetti L, Russo DS, Bertini F, Giuliani V. Translucent fiber post cementation using a lightcuring adhesive/composite system: SEM analysis and pull-out test. J Dent 2004;32:629-634.
30. Goracci C, Tavares AU, Fabianelli A, Monticelli F, Raffaelli O, Cardoso PC, et al. The adhesion between fiber posts and root canal walls: comparison between microtensile and push-out bond strength measurements. Eur J Oral Sci 2004;112:353-361.
31. Goracci C, Fabianelli A, Sadek FT, Papacchini F, Tay FR, Ferrari M. The contribution of friction to the dislocation resistance of bonded fiber posts. J Endod 2005;31:608-612.
32. Goldberg AJ, Burstone CJ. The use of continuous fiber reinforcement in dentistry. Dent Mater 1992;8:197-202.
33. Gutmann JL. The dentin-root complex: anatomic and biologic considerations in restoring endodontically treated teeth. J Prosthet Dent 1992;67:458-467.
34. Jokstad A, Mjör IA. Ten years’ clinical evaluation of three luting cements. J Dent 1996;24:309-315.
35. Junge T, Nicholls JI, Phillips KM, Libman WJ. Load fatigue of compromised teeth: a comparison of 3 luting cements. Int J Prosthodont 1998;11:558-564.
36. Kalkan M, Usumez A, Ozturk AN, Belli S, Eskitascioglu G. Bond strength between root dentin and three glass-fiber post systems. J Prosthet Dent 2006;96:41-46.
37. Kallio TT, Lastumäki TM, Vallittu PK. Bonding of restorative and veneering composite resin to some polymeric composites. Dent Mater 2001;17:80-86.
38. Kargül B, Caglar E, Kabalay U. Glass fiberreinforced composite resin as fixed space maintainers in children: 12-month clinical follow-up. J Dent Child 2005;72:109-112.
39. Kanninen MF. Int J Fract. 1973;9:83-90.
40. Kavousian A, Ziaee F, Nekoomanesh MH, Leamen MJ, Penlidis A. Determination of monomer reactivity ratios in styrene/2-ethylhexylacrylate copolymer. J Appl Polym Sci 2004;92:3368-3370.
41. Knebel et al. Process for synthesis of isobornyl acrylate, United States Patent 6329543, Dec. 11, 2001.
42. Kurtz JS, Perdigao J, Geraldeli S, Hodges JS, Bowles WR. Bond strength of tooth-colored posts. Effect of sealer, dentine adhesive, and root region. Am J Dent 2003;16:31-36.
43. Kwiatkowski SJ, Geller W. A preliminary consideration of the glass-ceramic dowel post and core. Int J Prosthodont 1989;2:51-55.
44. Lastumäki TM, Lassila LVJ, Vallittu PK. The semi-interpenetrating polymer network matrix of fiber-reinforced composite and its effect on the surface adhesive properties. J Mater Sci Mater Med 2003;14:803-809.
45. Mallmann A, Jacques LB, Valandro LF, Muench A. Microtensile bond strength of photoactivated and autopolymerized adhesive systems to root dentin using translucent and opaque fiber-reinforced composite posts. J Prosthet Dent 2007;97:165-172.
46. Martinez-Insua A, Da Silva L, Rilo B, Santana U. Comparison of the fracture resistances of pulpless teeth restored with a cast post and core or carbon-fiber post with a composite core. J Prosthet Dent 1998;80:527-533.
47. Matinlinna JP, Lassila LVJ, Özcan M, Yli-Urpo A, Vallittu PK. An introduction to silanes and their clinical applications in dentistry. Int J Prosthodont 2004;17:155-164.
48. Meiers JC, Duncan JP, Freilich MA, Goldberg AJ. Preimpregnated, fiber-reinforced prostheses. Part II. Direct applications: splints and fixed partial dentures. Quintessence Int 1998;29:761-768.
49. Meiers JC, Freilich MA. Use of a prefabricated fiber-reinforced composite resin framework to provide a provisional fixed partial denture over an integrating implant: a clinical report. J Prosthet Dent 2006;95:14-18.
50. Mendoza DB, Eakle WS, Kahl EA. Root reinforcement with a resin-bonded preformed post. J Prosthet Dent 1997;78:10-15.
51. Monticelli F, Osorio R, Albaladejo A, Aguilera FS, Ferrari M, Tay FR. Effects of adhesive systems and luting agents on bonding of fiber posts to root canal dentin. J Biomed Mater Res B 2006;77:195-200.
52. Moorthy J, Beebe DJ. In situ fabricated porous filters for microsystems. Lab Chip 2003;3:62-66.
53. Morgano SM, Milot P. Clinical success of cast metal posts and cores. J Prosthet Dent 1993;69:11-16.
54. Morgano SM, Hashem AF, Fotoohi K, Rose L. A nationwide survey of contemporary philosophies and techniques of restoring endodontically treated teeth. J Prosthet Dent 1994;72:259-267.
55. Morgano SM, Brackett SE. Foundation restorations in fixed prosthodontics: current knowledge and future needs. J Prosthet Dent 1999;82:643-657.
56. Mousa WF, Kobayashi M, Shinzato S, Kamimura M, Neo M, Yoshihara S. Biological and mechanical properties of PMMA-based bioactive bone cements. Biomaterials 2002;21:2137-2146.
57. Muniz L, Mathias P. The influence of sodium hypochlorite and root canal sealers on post-retention in different dentin regions. Oper Dent 2005;30:533-539.
58. Nakamura T, Ohyama T, Waki T. Stress analysis of endodontically treated anterior teeth restored with different types of post material. Dent Mater 2006;25:145-150.
59. Ngoh EC, Pashley DH, Loushine RJ, Weller N, Kimbrough F. Effects of eugenol on resin bond strengths to root canal dentin. J Endod 2001;27:411-414.
60. Ors JA, Perriere D.M.La. Thermogravimetric profile of decomposition of acrylate systems based on bornyl acrylate monomers. Polymer 1986;27:11-15.
61. Pan M, Liucheng Zhang, Linzhan Wan, Ruiqiang Guo. Preparation and characterization of composite resin by vinyl chloride grafted onto poly(BA-EHA)/poly(MMA-St). Polymer 2003;44:7121-7129.
62. Pashley DH, Sano H, Ciucchi B, Yoshiyama M, Carvalho RM. Adhesion testing of dentin bonding agents. Dent Mater 1995;11:117-125.
63. Pashley DH, Carvalho RM, Sano H, Nakajima M, Yoshiyama M, Shono Y. The microtensile bond test: a review. J Adhes Dent 1999;1:299-309.
64. Patierno JM, Rueggeberg FA, Anderson RW, Weller RN, Pashley DH. Push-out and SEM evaluation of resin composite bonded to internal cervical dentin. Endod Dent Traumatol 1996;12:227-236.
65. Perdigao J, Geraldeli S, Lee IK. Push-out bond strengths of tooth-colored posts bonded with different adhesive systems. Am J Dent 2004;17:422-426.
66. Pest LB, Cavalli G, Bertani P, Gagliani M. Adhesive post-endodontic restorations with fiber posts: push-out tests and SEM observations. Dent Mater 2002;18:596-602.
67. Pfirmann et al.,Method of manufacturing isobornyl acrylate, United States Patent 5399744, Mar. 21, 1995
68. Phillips RW. Science of Dental Materials, 1982, eighth ed. W.B. Saunders, Philadelphia, p.218.
69. Poliana Lopes, Marcelo Corbellini, Barbara Leite Ferreira, Nuno Almeida, Marcio Fredel, Maria Helena Fernandes, Rui Correia. New PMMA-co-EHA glass-filled composites for biomedical applications: Mechanical properties and bioactivity. Acta Biomater 2009;5:356-362.
70. Purton DG, Love RM, Chandler NP. Rigidity and retention of ceramic root canal posts. Oper Dent 2000;25:223-227.
71. Robbins JW. Guidelines for the restoration of endodontically treated teeth. Am J Dent. 1990;120:558-564.
72. Sadek FT, Goracci C, Monticelli F, Grandini S, Cury AH, Tay F, et al. Immediate and 24-hour evaluation of the interfacial strengths of fiber posts. J Endond 2006;32:1174-1177.
73. Sano H, Shono T, Sonoda H, Takatsu T, Ciucchi B, Horner JA, et al. Relationship between surface area for adhesion and tensile bond strength—evaluation of a microtensile bond test. Dent Mater 1994;10:236-240.
74. Saunders WP, Saunders EM. Coronal leakage as a cause of failure in root-canal therapy: a review. Endod Dent Traumatol 1994;10:105-108.
75. Schwartz RS. Adhesive dentistry and endodontics. Part 2: bonding in the root canal system-the promise and the problems: a review. J Endod 2006;32:1125-1134.
76. Schmitter M, Huy C, Ohlmann B, Gabbert O, Gilde H, Rammelsberg P. Fracture resistance of upper and lower incisors restored with glass fiber reinforced posts. J Endod 2006;32:328-330.
77. Schmitter M, Rammelsberg P, Gabbert O, Ohlmann B. Influence of clinical baseline findings on the survival of 2 post systems: a randomized clinical trial. Int J Prosthodont 2007;20:173-178.
78. Shillingburg Jr HT, Fisher DW, Dewhirst RB. Restoration of endodontically treated posterior teeth. J Prosthet Dent 1970;24:401-409.
79. Silness J, Gustavsen F, Hunsbeth J. Distribution of corrosion products in teeth restored with metal crowns retained by stainless steel posts. Acta Odontol Scand 1979;37:317-321.
80. Sirimai S, Riis DN, Morgano SM. “An in vitro study of the fracture resistance and the incidence of vertical root fracture of pulpless teeth restored with six post-and-core systems.” J Prosthet Dent 1999;81:262-270.
81. Shono Y, Ogawa T, Terashita M, Carvalho RM, Pashley EL, Pashley DH. Regional measurement of resin–dentin bonding as an array. J Dent Res 1999;78:699-705.
82. Smith DC. Recent developments and prospects in dental polymers. J Prosthet Dent 1962;12:1066-1078.
83. Soderholm KJ. Review of the fracture toughness approach. Dent Mater 2010;26:63-73.
84. Standlee JP, Caputo AA, Hanson EC. Retention of endodontic dowels: effects of cement, dowel length, diameter, and design. J Prosthet Dent 1978;39:400-405.
85. Sudsangiam S, Van Noort R. Do dentin bond strength tests serve a useful purpose? J Adhes Dent 1999;1:57-67.
86. Torbjörner A, Fransson B. A literature review on the prosthetic treatment of structurally compromised teeth. Int J Prosthodont 2004;17:369-376.
87. Valandro LF, Filho OD, Valera MC, de Araujo MA. The effect of adhesive systems on the pullout strength of a fiberglass-reinforced composite post system in bovine teeth. J Adhes Dent 2005;7:331-336.
88. Vallittu PK. Curing of silane coupling agent and its effect on the transverse strength of autopolymerizing polymethylmethacrylate-glass fiber composite. J Oral Rehabil 1997;24:124-130.
89. Van Noort R, Cardew GE, Howard IC, Noroozi S. The effect of local interfacial geometry on the measurement of the tensile bond strength to dentin. J Dent Res 1991;70:889-893.
90. Van Noort R, Noroozi S, Howard IC, Cardew G. A critique of bond strength measurements. J Dent 1989;17:61-67.
91. Vano M, Cury AH, Goracci C, Chieffi N, Gabriele M, Tay FR. The effect of immediate versus delayed cementation on the retention of different types of fiber post in canals obturated using a eugenol sealer. J Endod 2006;32:882-885.
92. Versluis A, Tantbirojn D, Douglas WH. Why do shear bond tests pull-out dentin? J Dent Res 1997;76:1298-1307.
93. Wood W. Retention of post in teeth with non-vital pulps. J Prosthet Dent 1983;49:504-506.
94. Zheng L, Waddon AJ, Farris RJ, Coughlin EB. X-ray characterizations of polyethylene polyhedral oligomeric silsesquioxane copolymers. Macromolecules 2002;35:2375-2379.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46347-
dc.description.abstract近年來牙科卓越的進步,主要是因為牙科材料的發展而帶動。同時隨著美學日益受到大眾的重視也加速了玻璃纖維根柱和樹脂黏著劑的創新和發展。本團隊在早期的實驗當中就已投入大量的人力、資源在開發新玻璃纖維根柱的配方;近來,由於市售商品A在製膠工業界,被大力推廣與使用。本團隊在第一時間以保密協定取得主要配方,並將其應用在我們早期開發的玻璃纖維根柱配方當中,發現在原本的玻璃纖維根柱配方中添加10wt% A其與市售樹脂黏著劑的黏著效果良好,在與市售玻璃纖維根柱的評比實驗當中,幾乎快達到市售玻璃纖維根柱與市售樹脂黏著劑之黏結力的兩倍(10.37±0.73 MPa;18.55±2.2 MPa)。由於這項發現讓本團隊更致力於利用A的主成分做為添加劑去研發配製,而我們也發現其主成分中B與C的添加是最有顯著效果的(25.04±1.26 MPa)。又由文獻可知,玻璃纖維根柱的黏著,最弱的界面往往存在樹脂黏著劑與牙本質之間,這也促使我們致力於樹脂黏著劑的開發,發現在以Bis-GMA與TEGDMA為樹脂基質中,添加少量的B與C(10 wt%)即能使樹脂基質與牙本質之間的鍵結能力提升,無論是在推離鍵結測試還是破裂強度測試都相當顯著(24.63±1.59 MPa)、(247.13±36.73 J/m2)。輔以界面分析,透過掃描式電子顯微鏡/能量散佈光譜儀(SEM/EDS)、傅立葉轉換紅外線光譜儀(ATR-FTIR)、X射線光電子光譜儀(XPS),可以讓我們知道破裂界面的屬性,以及樹脂黏著劑的性質,有助於日後對樹脂黏著劑的改質與強化提供新的方向。zh_TW
dc.description.abstractIn recent years, because of the development of dental materials, the dentistry is great advanced. In the mean while, people pay much attention to esthetics, so it also accelerates the creation and development of glass fiber posts and resin cements. In previous experiments, our team have made efforts in creating new glass fiber post formula; recently, a product, A, was used widely in the adhesive industry. We made an agreement with DBC to apply A into our glass fiber post formula. We found that if we added 10wt% of A into the glass fiber post formula, the bonding strength with commercial resin cement was greatly enhanced. Compared our glass fiber post with commercial glass fiber post, the bonding strength of our glass fiber post with commercial resin cement was almost twice as commercial glass fiber post (10.37±0.73 MPa;18.55±2.2 MPa). Because of this discovery, we made more efforts in how to use the main composition of A as addition. After that we also find B combine C possessed the most significant outcome (25.04±1.26 MPa). In the review articles, we know the weakest interface of glass fiber post cementation is in the dentin- resin cement interface. So we also concentrated on the development of resin cement. We found that if a small amount of B and C (10wt%) were added into the resin matrix composed of Bis-GMA and TEGDMA, the bonding strength of dentin- resin cement increased. 24.63±1.59 MPa for push-out test and 247.13±36.73 J/m2 for fracture toughness test. With the assist of SEM/EDS, ATR-FTIR, XPS, we knew the type of fracture interface and the property of resin cement. It is helpful to make the resin cement more suitable in the clinical usage.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:04:44Z (GMT). No. of bitstreams: 1
ntu-99-R96422018-1.pdf: 4199023 bytes, checksum: 83112159dbe3def49fb131d2a25d457d (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書…………………………………………………….I
誌謝……………………………………………………………………II
中文摘要………………………………………………………………IV
英文摘要……………………………………………………………….V
目錄………………………………………………………………….VII
圖目錄…………………………………………………………………IX
表目錄………………………………………………………………XIII
第一章 前言…………………………………………………………1
第二章 文獻回顧……………………………………………………4
第三章 動機與目的……………………………………………….20
第四章 材料與方法
4.1實驗材料………………………………………………………….23
4.2實驗儀器………………………………………………………….27
4.3實驗方法
4.3.1微拉伸鍵結強度測試玻璃纖維根柱與市售樹脂黏著劑之鍵結28
4.3.2樹脂黏著劑的研發及推離鍵結強度測試、破裂強度測試……32
4.3.3掃描式電子顯微鏡/能量散佈光譜儀………………………….39
4.3.4傅立葉轉換紅外線光譜儀(ATR-FTIR)....................40
4.3.5 x射線光電子光譜儀..................................40
第五章 結果與討論
5.1玻璃纖維根柱與市售樹脂黏著劑之微拉伸鍵結強度測試結果…42
5.2樹脂黏著劑與牙本質推離鍵結強度測試結果……………………45
5.3樹脂黏著劑與牙本質破裂強度測試結果…………………………46
5.4破裂界面分析結果…………………………………………………47
5.4.1破裂界面之掃描式電子顯微鏡能量散佈光譜儀分析結果……47
5.4.2破裂界面之傅立葉轉換紅外線光譜儀分析結果............48
5.4.3破裂界面之X射線光電子光譜儀分析結果……………….....49
第六章 結論…………………………………………………………53
第七章 未來研究目標……………………………………………..54
第八章 參考文獻…………………………………………………..55
圖目錄
圖4-1玻璃纖維(Glass Fiber)……………………………………….65
圖4-2市售玻璃纖維牙根柱釘 (Glass Fiber Post)……………….65
圖4-3 Bisphenol A glycerolate(1 glycerol/phenol) dimethacrylate和Tri(ethylene glycol) dimethacrlate……….66
圖4-4 Ethyl p-Dimethyl-aminobenzoate、Benzoyl peroxide Camphorquinone...........................................66
圖4-5 TPGDA&HDDA為稀釋用………………………………………..67
圖4-6 Variolink II樹脂黏著劑,由Ivoclar Vivadent公司生產…67
圖4-7 Panavia F 樹脂黏著劑,為AB兩劑………………………….68
圖4-8.1 減弱式全反射傅立葉紅外光譜儀Fourier Transform Infrared Spectrometers with attenuated
total reflection accessory (Jasco Co. Tokyo, Japan)………69
圖4-8.2 樹脂黏著劑塊材破裂面於水平減弱式全反射測量
台上進行光譜分析之狀況…………………………………….......69
圖4-9 掃描式電子顯微鏡能量散佈光譜儀(Scanning Electron Microscope/Energy Dispersive Spectrum, SEM/EDS)…………..70
圖4-10 X射線光電子光譜儀(X-ray photoelectron spectroscopy, XPS).....................................................70
圖4-11鐵氟龍模具…………………………………………………….71
圖4-12 以鑷子夾取浸潤好的玻璃纖維束(皆43wt%), 待沾附於纖維束上過多的樹脂基質瀝掉後,緊密地堆疊在鐵氟龍模具中至材料充滿整個模具,再置入烘箱中8小時,溫度為攝氏120度….............71
圖4-13 牙科用照光聚合………………………………………………72
圖4-14 玻璃纖維複合樹脂試片………………………………………72
圖4-15 高速精密切割機 Isomet 2000………………………………73
圖4-16 Bisco 公司生產的Micro Tensile Tester (MTT)…………73
圖4-17將截面積1mm2的條狀樣品,使用廠商提供之黏膠將樣品固定在MTT載台上................................................74
圖4-18 24顆根部完整,未經根管治療處理之人類上、下顎單根牙齒,拔除後經去除牙根表面殘留之軟組織及牙結石,即浸泡於蒸餾水及4 ℃低溫保存……………………...........................74
圖4-19 將根尖3mm移除,並將根管修形至引導針(約同80號根管銼尖端直徑) 可穿出根尖側開口.................................75
圖4-20 根管縱軸垂直於模具口後,包埋於直徑3公分、高2公分的
環狀金屬模具正中央………………………………………….......75
圖4-21使用高速鑽孔機,於試片正中央製備直徑1.8mm根管孔洞…76
圖4-22製備出根管孔洞與牙本質外緣距離小於1mm,不予採用....76
圖4-23 以慢速切割機(Isomet, Buehler Ltd, Lake Bluff, IL, USA)將牙根遠心面沿長軸做平行縱切.........................77
圖4-24將牙根包埋後隨機分成六組,每組四顆包埋後的牙根。利用高速精密切割機將包埋後牙根之根管,在距根管開口切除面2.000mm、3.550mm、5.100mm、6.650mm處各切一刀,每組最終可以得到12片(1±0.05) mm厚度的牙根片……………………………………………….77
圖4-25 推離鍵結流程示意圖…………………………………………78
圖4-26.1先將樹脂黏著劑做預聚合。在鐵氟龍模具中上下各以透明形成帶(mylar strip)覆蓋…………………………………..........78
圖4-26.2將牙本質薄片隨機分成六組,每組10片牙本質薄片,依序與樹脂黏著劑試片進行黏著,同樣以牙科用鹵素光(760 mw/cm2, Optilux 501, Syborn Dentalspecialties, USA)照射40秒,底部亦同樣照射40秒……………………………….....................79
圖4-27推離鍵結強度測試儀器為萬能拉力測試機………………….79
圖4-28利用上下兩片金屬板模具夾緊,並以3個螺絲固定,再加上直徑3公分、高2公分的環狀金屬套筒,將模具整體由外圍固定,之後再將螺絲轉緊。在上模具的中央圓孔中,置入直徑1.7 mm 金屬撞針80
圖4-29非對稱雙懸臂界面接著測量法……………………………….80
圖4-30用步進式馬達將此刀片以等速度(5μm/s)推進而達成一穩定狀態(steady state)之裂隙延伸速度...........................81
圖4-31 破裂強度測試後之塊材..............................81
圖4-32精序列脫水每個間隔45分鐘
(50%, 60%, 70%, 80%, 90%, 95%, and 100% ethanol).......82
圖4-33 純牙本質之傅立葉轉換紅外線光譜分析................83
圖5-1 玻璃纖維根柱添加不同比例黏著促進劑(POSS-MA、345)與市售樹脂黏著劑Panavia f之微拉伸鍵結強度測試結果………………83
圖5-2 含345主成分之玻璃纖維根柱與市售樹脂黏著劑Panavia f
之微拉伸鍵結強度測試結果,345、IBOA及EHA無顯著差異(b);DM120表現次之(d)僅次於市售玻璃纖維根柱
Cytec(a);IBOA+EHA最佳(c)………………................84
圖5-3 含345成分之樹脂黏著劑與牙本質推離鍵結強度測試結果,IBOA+EHA與牙本質推離鍵結強度為最佳,有顯著差異
(c);345與IBOA次之,無顯著差異(a);EHA、DM120
與市售Panavia f最差,三者無顯著差異(b)…………………….85
圖5-4 推離鍵結強度測試後之電子顯微鏡圖……………………….86
圖5-5 樹脂黏著劑與牙本質破裂強度測試結果,IBOA+EHA
這組與牙本質的破裂強度為最佳,345與IBOA次之,且三者
無顯著差異(a);最差為DM120與EHA,兩者無顯著差異(b)….87
圖5-6 樹脂黏著劑與牙本質破裂強度測試後,牙本質塊材破裂面
在電子顯微鏡下圖……………………………………………….....88
圖5-7破裂界面之傅立葉轉換紅外線光譜儀分析結果,牙本質塊材、
樹脂黏著劑塊材、純牙齒之疊圖表示.........................89
圖5-8 六種純樹脂黏著劑之傅立葉轉換紅外線光譜儀分析結果,
並標示官能基所在位置.....................................90
圖5-9 以345為例,將純345、牙本質塊材、純牙本質之傅立葉
轉換紅外線光譜儀分析結果,以疊圖表示,並標示相關官能基位置91
圖5-10 將牙本質塊材破裂面做X射線光電子光譜儀分析結果,以碳做高解析度分析,並將各組以疊圖示之…………………...........92
圖5-11 將牙本質塊材破裂面做X射線光電子光譜儀分析結果,
以氧做高解析度分析,並將各組以疊圖示之………………….....93

表目錄
(表一)將充分混合雙起始劑的樹脂基質,分別加入重量百分比
10wt%的五種化合物…………………………………………........94
(表二)將充分混合雙起始劑的樹脂基質,分別加入重量百分比
10wt%的五種化合物(1~5組)……………………………….......94
(表三)牙本質塊材之破裂界面掃描式電子顯微鏡能量散佈光譜
儀分析結果,原子比與重量比……………………………….......95
(表四)樹脂黏著劑塊材、牙本質塊材之破裂面及純牙本質切面
進行x光射線光電子光譜儀分析,針對O、C、Ca、P等四種元素進行普查(survey scans),將其結果以元素比例做表.................96
dc.language.isozh-TW
dc.subject玻璃纖維根柱zh_TW
dc.subject破裂強度zh_TW
dc.subject推離鍵結測試zh_TW
dc.subject樹脂黏著劑zh_TW
dc.subjectfracture toughnessen
dc.subjectpush-out testen
dc.subjectresin cementen
dc.subjectglass fiber posten
dc.title應用高分子聚合物樹脂複合材以研發玻璃纖維根柱及樹脂類根柱黏著劑之研究zh_TW
dc.titleApplication of polymer and resin composite to develop glass fiber post and resin cementen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王大銘,戴子安
dc.subject.keyword玻璃纖維根柱,樹脂黏著劑,推離鍵結測試,破裂強度,zh_TW
dc.subject.keywordglass fiber post,resin cement,push-out test,fracture toughness,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2010-07-27
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
4.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved