請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46344
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇銘嘉(Ming-Ja Su) | |
dc.contributor.author | Cheng-Fang Chuang | en |
dc.contributor.author | 莊承芳 | zh_TW |
dc.date.accessioned | 2021-06-15T05:04:35Z | - |
dc.date.available | 2011-09-13 | |
dc.date.copyright | 2010-09-13 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-27 | |
dc.identifier.citation | [1] Surya MA., Carl JL., Richard VM., Dharmendrakumar AP.,Anil V., Hector OV.. Clinical impact of left ventricular hypertrophy and implications for regression. Progress in cardiovascular diseases 2009, 52, 153–167.
[2] Kempf T, Wollert KC. Nitric oxide and the enigma of cardiac hypertrophy. Bioessays 2004; 6: 608-15. [3] McMullen, JR., & Jennings, GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clinical and Experimental Pharmacology and Physiology 2007, 34, 255–262. [4] Wollert KC, Drexler H. Regulation of cardiac remodeling by nitric oxide: focus on cardiac myocite hypertrophy and apoptosis. Heart Failure Reviews. 2002;7: 317-25. [5] Mulvagh SL, Michael LH, Perryman MB, Roberts R, Schneider MD. A hemodynamic load in vivo induces cardiac expression of the cellular oncogene, c-myc. Biochemical and Biophysical Research Communications 1987;147:627–636. [6] Komuro I, Kurabayashi M, Takaku F, Yazaki Y. Expression of cellular oncogenes in the myocardium during the developmental stage and pressure-overload hypertrophy of the rat heart. Circulation Research 1988;62:1075–1079. [7] Izumo S, Nadal-Ginard B, Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proceedings of the National Academy of Sciences 1988;85:339–343. [8] Cooper IVG, Kent RL, Uboh CE, Thompson EW, Marino TA. Hemodynamic versus adrenergic control of cat right ventricularhypertrophy. The Journal of Clinical Investigation 1985;75:1403–1414. [9] Russell B, Motlagh D, Ashley WW. Form follows function: how muscle shape is regulated by work. Journal of Applied Physiology 2000; 88: 1127-32. [10] José Antonio Dias Garcia1 and Erika Kristina Incerpi. Factors and mechanisms involved in left ventricular hypertrophy and the anti-hypertrophic role of nitric oxide.Journal of the Brazilian Society of Cardiology 2008; 90: 409-416. [11] Ozaki M, Kawashima S, Yamashita T, Hirase T, Ohashi Y, Inoue N, et al. Overexpression of endothelial nitric oxide synthase attenuates cardiac hypertrophy induced by chronic isoproterenol infusion. Circulation Journal 2002; 66:851-6. [12] Kempf T, Wollert KC. Nitric oxide and the enigma of cardiac hypertrophy.Bioessays 2004; 6: 608-15. [13] Morgan HE, Gordon EE, Kira Y, Chua BHL, Russo LA, Peterson CI, et al. Biochemical mechanisms of cardiac hypertrophy. Annual Review of Physiology 1987; 49: 533-43. [14] Von Harsdorf R, Kang RE, Fullerton M, Woodcock EA. Myocardial stretch stimulates phosphatidyl-inositol turnover. Circulation Research 1989; 65: 494-501. [15] Sussman A, Mcculloch A, Borg TK. Dance band on the titanic: biomechanical signaling in cardiac hypertrophy. Circulation Research 2002; 91: 888-98. [16] Burridge K, Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annual Review of Cell and Developmental Biology. 1996; 12: 463-519. [17] Cook JL, Bhandaru S, Giardian JF, Calycomb WC, Re´ RN. Identification and antisense inhibition of a renin–angiotensin system in transgenic cardiomyocytes. American Journal of Physiology 995;268:H1471–H1482. [18] Sadoshima J, Izumo S. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT receptor subtype. Circulation Research 1993;73:413–423. [19] Shirai H, Takahashi K, Katada T, Inagami T. Mapping of G protein coupling sites of the angiotensin II type 1 receptor. Hypertension. 1995; 25: 726-30. [20] Bernstein KE, Ali MS, Sayeski PP, Semeniuk D, Marrero MB. New insights into the cellular signaling of seven transmembrane receptors: the role of tyrosine phosphorylation. Laboratory Investigation. 1998; 78: 3-7. [21] Dash R, Schmidt AG, Pathak A, Gerst MJ, Biniakiewicz D, Kadambi VJ, et al. Differential regulation of p38 mitogen-activated protein kinase mediates gender-dependent catecholamine-induced hypertrophy. Cardiovascular Research 2003; 57: 704-14. [22] Campos LA, Iliescu R, Fontes M, Schlegel WP, Bader M, Baltatu OC. Enhanced isoproterenol-induced cardiac hypertrophy in transgenic rats with low brain angiotensinogen. American Journal of Physiology - Heart and Circulatory Physiology 2006; 291 (5): H2371-6. [23] Shubeita HE, Martinson EA, Van Bilsen M, Chien KR, Brow JH. Transcriptional activation of the cardiac myosin light chain 2 and atrial natriuretic factor genes by protein kinase C in neonatal rat ventricular myocytes. Proceedings of the National Academy of Sciences of the United States of America. 1992; 89: 1305-9. [24] Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001; 414: 799-806. [25] Velloso LA, Carvalho CR, Rojas FA, Folli F, Saad MJ. Insulin signalling in heart involves insulin receptor substrates-1 and -2, activation of phosphatidylinositol 3-kinase and the JAK 2- growth related pathway. Cardiovascular Research. 1998; 40:96-102. [26] Araujo EP, De Souza CT, Gasparetti AL, Ueno M, Boschero AC, Saad MJ, et al. Short-term in vivo inhibition of insulin receptor substrate-1 expression leads to insulin resistance, hyperinsulinemia, and increased adiposity. Endocrinology. 2005; 146: 1428-37. [27] Sykiotis GP, Papavassiliou AG. Serine phosphorylation of insulin receptor substrate-1: a novel target for the reversal of insulin resistance. Molecular Endocrinology 2001; 15: 1864-9. [28] Brownsey RW, Boone AN, Allard MF. Actions of insulin on the mammalian heart: metabolism, pathology and biochemical mechanisms. Cardiovascular Research 1997; 34: 3-24. [29] Samuelsson AM, Bollano E, Mobini R, Larsson BM, Omerovic E, Fu M, et al. Hyperinsulinemia: effect on cardiac mass/function, angiotensin II receptor expression, and insulin signaling pathways. American Journal of Physiology - Heart and Circulatory Physiology 2006; 291: H787-H796. [30] Lee SS, Yang HC. Isoquinoline alkaloids from Neolitsea Konishii. Journal of The Chinese Chemical Society 1992;39:189. [31] Su MJ, Chang YM, Chi JF, Lee SS. Thaliporphine, a positive inotrophic agent with a negative chronotrophic action. European Journal of Pharmacology 1994;254:141–50. [32] Hung LM, Lee SS, Su MJ. Cardioprotective effect of thaliporphine on ischemic and ischemic reperfusion rat heart. The eighth Southeast Asian-Western Pacific Regional Meeting of Pharmacologist 1999. Abstract No P005. [33] Hung LM, Lee SS, Chen JK, Huang SS, Su MJ. Thaliporphine protects ischemic and ischemic-reperfused rat hearts via an NO-dependent mechanism. Drug Development Research 2001;52:446–453. [34] Chiao CW, Lee SS, Wu CC, Su MJ. Thaliporphine increases survival rate and attenuates multiple organ injury in LPS-induced endotoxaemia. Naunyn Schmiedebergs Arch Pharmacol 2005,371,34–43. [35] Andr6 Rossi, Sylviane Lortet ’. Energy metabolism patterns in mammalian myocardium adapted to chronic physiopathological conditions. Cardiovascular Research 1996,31, 163- 171. [36] Christe ME, Rodgers RL: Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. Journal of Molecular and Cellular Cardiology 1994;26:1371-1375. [37] Allard MF, Schönekess BO, Henning SL,English DR, Lopaschuk GD: Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. American Journal of Physiology 1994;267:H742-H750. [38] Michael N. Sack, MD; Toni A. Rader, BS; Sonhee Park, PhD; Jean Bastin, PhD; Sylvia A. McCune, PhD; Daniel P. Kelly, MD: Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 1996 ,94,2837-42. [39] Lewis, Y. S.; Neelakantan, S. (-)-Hydroxycitric acids :The principal acid in the fruits of Garcinia cambogia. Phytochemistry 1965, 4, 619-625. [40] Sullivan, A. C.; Hamilton, J. G.; Miller, O. N.; Wheatley, V. R. Inhibition of lipogenesis in rat liver by (-)-hydroxycitrate. Archives of Biochemistry and Biophysics. 1972, 150, 183-190. [41] B. S. Jena, G. K. Jayaprakasha, R. P. Singh, and K. K. Sakariah. Chemistry and biochemistry of (-)-hydroxycitric acid from garcinia. Journal of Agricultural and Food Chemistry. 2002, 50, 10-22. [42] Ishihara, K.; Oyaizu, S.; Onuki, K.; Lim, K.; Fushik, T. Chronic (-)-hydroxycitrate administration spares carbohydrate utilization and promotes lipid oxidation during exercise in mice. Journal of Nutrition. 2000, 130, 2990-2995. [43] F M Black, S E Packer, T G Parker, L H Michael, R Roberts, R J Schwartz, and M D Schneider. The vascular smooth muscle alpha-actin gene is reactivated during cardiac hypertrophy provoked by load. The Journal of Clinical Investigation. 1991, 88, 1581–1588. [44] Ruwhof, C. and Laarse, A.V.D. 2000. Mechanical stressinduced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovascular Research. 47: 23–37. [45] Antos CL, McKinsey TA, Frey N, Kutschke W, McAnaully J, Shelton JM, Richardson JA, Hill JA & Olson EN Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proceedings National Academy Sciences of United States of American 2002, 99, 907-912. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46344 | - |
dc.description.abstract | 背景:TM-1是(+)-thaliporphine的衍生物。在之前本實驗室研究發現到長期口服 20mg/kg TM-1會減少小鼠心肌缺血再灌流時心肌細胞的壞死。然而,心肌因為缺氧壞死的情形亦發生在壓力過載引起心臟肥大的過程中。本篇主要研究長期口服 20mg/kg TM-1在壓力過載的ICR小鼠是否具有心臟的保護效果以及探討可能的機轉。
方法:以腹部主動脈結紮建立壓力過載ICR小鼠模式,將手術後的老鼠分別口服給予2個月的vehicle和20mg/kg TM-1來觀察其對心臟構造上和功能上的保護作用。採血測量小鼠血清中agiotensin II、ANP和LDH的含量。利用西方點墨法去看小鼠心臟組織中α-SMA、p-ERK、p-Akt和p-GSK3β表現量的變化。利用組織切片HE染色來定量心肌細胞直徑大小以及MT染色來看心肌細胞中collagen的含量。另外,以pilocarpine引發癲癇小鼠模式來看口服給予20mg/kg TM-1對於癲癇小鼠的安全性。 結果:本實驗發現長期口服給予20mg/kg TM-1可以有效抑制壓力過載造成的心臟肥大以及左心室功能的下降,並抑制血清中angiotensin II、ANP和LDH釋放量。此外,長期口服20mg/kg TM-1也會抑制心臟組織中α-SMA、p-ERK、p-Akt和p-GSK3β表現量的上升。從組織切片MT染色觀察到長期口服20mg/kg TM-1可以減少心臟纖維化的情形。另外,口服pretreat 20mg/kg TM-1對於pilocarpine引起癲癇小鼠其大、小發作頻率和死亡率皆無明顯影響。 結論:長期口服20mg/kg TM-1可以有效抑制心臟細胞的肥大和防止心臟功能變差,其可能的機轉是TM-1抑制心臟組織中ERK、Akt和GSK3β的活化來達到對於心臟的保護作用。 | zh_TW |
dc.description.abstract | Background: TM-1 is a molecular derivative of thaliporpine. Our previous studies have shown that chronic oral treatment with 20mg/kg TM-1 had cardioprotective effects on myocardial ischemia-reperfusion injury. However, myocardial cell necrosis induced by hypoxia or ischemia also occurs in pressure overload-induced hypertrophy. The aim of this study was to investigate cardioprotective effects of chronic treatment with TM-1 in pressure-overload ICR mice model.
Method: Abdominal aortic banding was performed in ICR mice. Operated mice were randomly classified to treatment with vehicle or 20mg/kg TM-1 for 2 months. Morphologic and hemodynamic measurements were done after 2 months drug treatment to check the cardioprotective effects, and we also evaluated their plasma angiotensin II, ANP and LDH level. According to western blot analysis, we observed the changes of α-SMA, p-ERK, p-Akt and p-GSK3β expression in cardiac myocytes. Use HE staining method to observe diameter of cadiomyocytes and MT staining method to observe collagen accumulation. Besides, we check the severity of pilocarpine-induced epilepsy in mice combined with oral pretreatment of 20mg/kg TM-1. Results: Our results showed that chronic oral treatment with 20mg/kg TM-1 inhibited cardiac hypertrophy and improved cardiac function induced by pressure overload. TM-1 also inhibited the release of angiotensin II, ANP and LDH. Besides, pressure overload-induced activaton ofα-SMA, ERK, Akt and GSK-3β was significantly reduced by chronic oral treatment with 20mg/kg TM-1. We also found that chronic oral treatment with 20mg/kg TM-1 reduced cardiac collagen accumulation. On the other hand, oral treatment with 20mg/kg TM-1 had no effects on seizure frequency, epilepsy frequency and mortality rate induced by pilocarpine in mice. Conclusion: Chronic oral treatment with 20mg/kg TM-1 inhibited cardiac hypertrophy and improved cardiac function of AAB mice. This cardioprotective effects of TM-1 was related to its inhibitions of ERK, Akt and GSK-3β. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:04:35Z (GMT). No. of bitstreams: 1 ntu-99-R97443006-1.pdf: 1383258 bytes, checksum: ac1c9c8bb7e63ed8ed3c437fc14e7f1f (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員審定書………………………………………….. I
誌謝……………………………………………………….. II 縮寫表……………………………………………………... III 中文摘要…………………………………………………... V 英文摘要…………………………………………………... VII 第一章 緒論…………………………………………....... 1 Tab.1-1 中華民國九十七年台灣全國十大死因………….……….......... 1 Fig.1-1 高血壓引起心臟肥大所造成的後果............................................ 3 Fig.1-2 心臟肥大的種類........................................................................... 4 Fig.1-3 離心性左心室肥大和向心性左心室肥大的差異........................ 4 Fig.1-4 Mechanical overload引起心臟肥大的訊息傳遞路徑…………. 6 Fig.1-5 Neurohumoral factors引起心臟肥大的訊息傳遞路徑………… 7 Fig.1-6 Angiotensin II引起心臟肥大的訊息傳遞路徑………………… 8 文獻回顧…………………………………………………………………. 10 動機及研究目的…………………………………………………............ 10 Fig.1-7 (+)-thaliporphine和TM-1結構...................................................... 11 第二章 實驗材料與方法……………………………….. 12 Fig.2-1 實驗設計………………………………………………………… 14 第三章 實驗結果……………………………………….. 24 Tab.3-1 口服20mg/kg TM-1對於腹腔注射300mg/kg pilocarpine在正常ICR小鼠引起大、小發作頻率和死亡率之影響……………… 29 Fig.3-1 長期口服TM-1對於壓力過載小鼠其心臟重量的影響……....... 30 Fig.3-2a 長期口服TM-1對於壓力過載小鼠其心臟左心室收縮壓(LVDP)的影響…………………………………………………. 31 Fig.3-2b長期口服TM-1對於壓力過載小鼠其心臟左心室内壓(i)上升最大變化率(+dp/dt), (ii)下降最大變化率(-dp/dt) ……….............. 32 Fig.3-3a 長期口服TM-1對於壓力過載小鼠心臟中α-SMA蛋白表現量的影響…………………………………………………………. 33 Fig.3-3b 長期口服TM-1對於壓力過載小鼠心臟中p-ERK、p-AKT和p-GSK3β表現量的影響………………………………………. 34 Fig.3-4 長期口服TM-1對於壓力過載小鼠其血清中AngII含量影響… 35 Fig.3-5 長期口服TM-1對於壓力過載小鼠其血清中ANP含量影響…… 36 Fig.3-6 長期口服TM-1對於壓力過載小鼠其(a)在左心室處,(b)在心室中膈處心肌細胞直徑大小的影響……………………………… 37 Fig.3-7 長期口服TM-1對於壓力過載小鼠其心肌細胞中collagen含量的影響…………………………………………………………… 38 Fig.3-8 長期口服TM-1對於壓力過載小鼠其血清中LDH含量影響….. 39 第四章 討論…………………………………………...... 40 Fig.4-1 檸檬酸結構……………………………………………………… 42 Fig.4-2 (-)-HCA結構……………………………………………............ 42 Fig.4-3 酒石酸結構………………………………………………........... 42 第五章 結論…………………………………………….. 46 參考文獻………………………………………………….. 47 | |
dc.language.iso | zh-TW | |
dc.title | TM-1在壓力過載ICR小鼠模式之心臟保護效果的探討 | zh_TW |
dc.title | Cardioprotective Effects of TM-1 on Pressure-overload ICR Mice Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 顏茂雄(Mao-Hsiung Yen),林正一(Cheng-I Lin),蔡佳醍(Chia-Ti Tsai) | |
dc.subject.keyword | 壓力過載,心臟肥大,TM-1,酒石酸,ERK,Akt:GSK-3β, | zh_TW |
dc.subject.keyword | Pressure-overload,Cardiac hypertrophy,TM-1,tartaric acid,ERK,Akt,GSK-3β, | en |
dc.relation.page | 54 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-27 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。