Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46342
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵
dc.contributor.authorHui-Ching Chuangen
dc.contributor.author莊蕙菁zh_TW
dc.date.accessioned2021-06-15T05:04:30Z-
dc.date.available2016-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-18
dc.identifier.citationAa, K., Flengsrud, R., Lindahl, V., Tronsmo, A., 1994. Characterization of production and enzyme properties of an endo-β-1,4-glucanase from Bacillus subtilis CK-2 isolated from compost soil. Antonie Van Leeuwenhoek 66(4), 319–326.
Abe, T., Matsumoto, T., 1979. Studies on the distribution and ecological role of termites in a lowland rain forest of west Malaysia. 3. distribution and abundance of termites in pasoh forest reserve. Japanese Journal of Ecology 29, 337-351.
Afonso, C., Tulman, E., Lu, Z., Oma, E., Kutish, G., Rock, D., 1999. The genome of Melanoplus sanguinipes entomopoxvirus. Journal of Virology 73(1), 533-52.
Akaracharanya, A., Lorliam, W., Tanasupawat, S., Lee, K.C., Lee, J.-S., 2009. Paenibacillus cellulositrophicus sp. nov., a cellulolytic bacterium from Thai soil. International Journal of Systematic and Evolutionary Microbiology 59, 2680-2684.
Åman, P., & Westerlund, E., 1996. Cell wall polysaccharides: Structural, chemical and analytical aspects. In: Dekker, M., (Eds.), Carbohydrates in food, Ann-Charlotte Eliasson, New York, pp. 191-226.
Aswathy, U.S., Sukumaran, R.K., Devi, G.L., Rajasree, K.P., Singhania, R.R., Pandey, A., 2010. Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy. Bioresource Technology 101, 925-930.
Bajpai, P., Bajpai, P.K., 1992. Biobleaching of kraft pulp. Process Biochem., 27, 319-25
Bajpai, P., 1999. Application of enzymes in the pulp and paper industry. Biotechnology Progress 15, 147-157.
Bajpai, P., Bajpai, P.K., 1998. Deinking with enzymes: a review. Tappi Journal 81, 111-117.
Bajpai, P., Mishra, S.R., Mishra, O.P., Kumar, S., Bajpal, P.K., 2006. Use of enzymes for reduction in refining energy - laboratory studies. Tappi Journal 5, 25-32.
Ban, K., Kaieda, M., Matsumoto, T., Kondo, A., Fukuda, H., 2001. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particle. Biochemical Engineering Journal 8(1), 39-43.
Bhardwaj, N.K., Bajpai, P., Bajpai, P.K., 1996. Use of enzymes in modification of fibres for improved beatability. Journal of Biotechnology 51, 21-26.
Bhat, M.K., 2000. Cellulases and related enzymes in biotechnology. Biotechnology Advances 18, 355-383.
Bhat, M.K., Bhat, S., 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances 15, 583-620.
Bhosle, S. H., Rao, M. B., Despande, V. V., Srinivasan, M. C., 1995. Thermostability of high-activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20). Enzyme and Microbial Technology 17, 136-139.
Bignell, D.E., 2000. Symbiosis with fungi. termites: evolution, sociality, symbiosis, ecology In: Abe, T., Bignell, D.E., Higashi, M., (Eds.), Kluwer Academic Publishers, Holland, pp. 289-306.
Breccia, J.D., Moran, A.C., Castro, G.R., Sineriz, F., 1998. Thermal stabilization by polyols of β-xylanase from Bacillus amyloliqefaciens. Journal of Chemical Technology and Biotechnology 71, 241-245.
Borriss, R., Manteuffel, R., Hofemeister, J., 1988. Molecular cloning of a gene coding for thermostable betaglucanase from Bacillus macerans. Journal of Basic Microbiology 28, 3-10.
Borriss, R., Olsen, O., Thomsen, K.K., Wettstein, D., 1989. Hybrid Bacillus endo-(1-3,1-4)-beta-glucanases: construction of recombinant genes and molecular properties of the gene products. Carlsberg Research Communications 54, 41-54.
Breccia J.D., Sifieriz, F., Baigori, M.D., Castro, G.R., Hatti-Kaul, R., 1998. Purification and characterization of a thermostable xylanase from Bacillus amyloliquefaciens . Enzyme and Microbial Technology. 22, 42-9.
Brune, A., Miambi, E., Breznak, J.A., 1995. Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites. Applied and Environmental Microbiology 61, 2688–2695.
Calvini, P., 2005. The influence of levelling-off degree of polymerization on the kinetics of cellulose degradation. Cellulose 12, 445-447.
Champagne, P., Li, C.J., 2009. Enzymatic hydrolysis of cellulosic municipal wastewater treatment process residuals as feedstocks for the recovery of simple sugars. Bioresource Technology 100, 5700-5706.
Darlington, J.P., 1994 Nutrition and evolution in fungusgrowing termites. In: Hunt, J.H., Nalepa, C.A., (Eds.), Nourishment and Evolution in Insect Societies, Westview Press, Boulder, CO., pp. 105-130.
Deng, T., Zhou, Y., Cheng, M., Pan, C., Chen C., Mo J., 2008. Synergistic activities of the symbiotic fungus Termitomyces albuminosus on the cellulase of Odontotermes formosanus (Isoptera: Termitidae). Sociobiology 51, 733-740.
Dienes, D., Borjesson, J., Stalbrand, H., Reczey, K., 2006. Production of Trichoderma reesei Cel7B and its catalytic core on glucose medium and its application for the treatment of secondary fibers. Process Biochemistry 41, 2092-2096.
Eivazi, F., Tabatabai M.A., 1988. Glucosidases and galactosidases in soils. Soil Biology and Biochemistry 20, 601-606.
Faaij, A. P. C., 2006. Bio-energy in Europe: changing technology choices. Energy Policy 34, 322-324.
Ferrero, M. A., Castro, G. R., Abate, C. M., Baigori, M. D., Sineriz, F., 1996. Ferrero, M.A., Castro, G.R., Abate, C.M., Baigori, M.D. and Sineriz, F., 1996. Thermostable alkaline proteases of Bacillus licheniformis MIR 29: isolation, production and characterization. Applied Microbiology and Biotechnology 45, 327-332.
Flint, H. J., Martin, J. C., McPherson, A., Daniel, A.S., Zhang, J.X., 1993. A bifunctional enzyme, with separate xylanase and beta(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J. Bacteriol. 175:2943–2951.
Fogarty, W.M., Kelly, C.T., 1980. Amylases, amyloglucosidases and related glucanases. In Economic microbiology. Rose, A.H.,(Eds.), Vol. 5, Academic Press Inc., New York, pp. 115-170.
Giordano R. L., Hirano P. C., Goncalves L. R., Netto, W. S., 2000. Study of biocatalysts to produce ethanol from starch. Coimmobilisation of glucoamylase and yeast in gel. Applied Biochemistry and Biotechnology 86, 643-654.
Guo, Z., Xu, X., 2005. New opportunity for enzymatic modification of fats and oils with industrial potentials. Organic and Biomolecular Chemistry 3(14), 2615-2619.
Gupta, R., Gupta, N., Rathi, P., 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology 64(6), 763–781.
Han, S. J., Yoo,Y. J., Kang, H. S., 1995. Characterization of a bifunctional cellulase and its structural gene. The Journal of Biological Chemistry. 270, 26012-26019.
Hobbie, M., Melillo, J.M., 1984. Role of microbes in global carbon cycling. In: Klug, M.I., Reddy, C.A., (Eds.), Current Perspectives in Microbial Ecology, Am. Soc. Microbiol., Washington, DC, pp. 389-393.
Hyodo, F., Inoue, T., Azuma, J. I., Tayasu, I., Abe, T., 2000. Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera: Macrotermitinae). Soil Biology and Biochemistry 32, 653-658.
Hyodo, F., Tayasu, I., Inoue, T., Azuma, J. I., Kudo, T., Abe, T., 2003. Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Functional Ecology 17, 186-193.
Johjima, T., Ohkuma, M., Kudo, T., 2003. Isolation and cDNA cloning of novel hydrogen peroxide-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus. Applied Microbiology and Biotechnology 61, 220-225.
Kalisz, H. M., 1988. Microbial proteinases. Advances in Biochemical Engineering/Biotechnology 36, 1-65.
Kambhampati, S., Eggleton, P., 2000. Taxonomy and phylogenetics of termites. termites: evolution, sociality, symbioses and ecology. Abe, T., Bignell, D.E., Higashi, M., (Eds.), Kluwer Academic Publishers, the Netherlands, pp. 1-24.
Kang, S. G., Kin, I. S., Rho, Y. T., Lee, K. J., 1995. Production dynamics of extracellular proteases accompanying morphological differentiation of Streptomyces albidoflavus SMF301. Microbiology 141, 3095-3103.
König, J., Grasser, R., Pikor, H., Vogel, K., 2002. Determination of xylanase, β-glucanase, and cellulase activity. Analytical and Bioanalytical Chemistry 374, 80-87.
Kuhad, R.C., Singh, A., Eriksson, K.E.L., 1997. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Advances in Biochemical Engineering/Biotechnology 57, 45-125.
Lefѐvre, C.R., Bignell, D.E., 2002. Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. symbiosis: mechanisms and model systems. Seckbach, J., (Eds.), Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 731-756.
Lee, K. E., Wood, T.G., 1971. Termites and soil. Academic Press, London, pp. 251.
Leuthold, R. H., Badertscher, S., Imboden, H., 1989. The inoculation of newly formed fungus comb with Termitomyces in Macrotermes colonies (Isoptera, Macrotermitinae). Insectes Sociaux 36, 328-338.
Ljungdahl L.G., Eriksson K.E., 1985. Ecology of microbial cellulose degradation. Advances in Microbial Ecology 8, 237-299.
Long, Y. H., Xie, L., Liu, N., Yan, X., Li, M. H., Fan, M. Z., Wang Q., 2010. Comparison of gut-associated and nest-associated microbial cmmunities of a fungus-growing termite (Odontotermes ynanensis). Insect Science 7, 265-276.
Lynd, L.R., Cushman, J.H., Nichols, R.J., Wyman, C.E., 1991. Fuel ethanol from cellulosic biomass. Science 251, 1318-1323.
Lynd, L.R., Laser, M.S., Brandsby, D., Dale, B.E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J.D., Sheehan, J., Wyman, C.E., 2008. How biotech can transform biofuels. Nature Biotechnology 26, 169-172.
Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S., 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66, 506-577.
Maki, M., Leung, K. T., Qin, W., 2009. The prospects of cellulaseproducing bacteria for the bioconversion of lignocellulosic biomass. International Journal of Biological Sciences 5(5), 500-516.
Martin, M. M., 1991. The evolution of cellulose digestion in insects. Philosophical Transactions of the Royal Society of London. B. Biological Sciences 333, 281-288.
Martin, M.M., Martin J.S., 1978. Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: the role of acquired digestive enzymes. Science 199, 1453-1455.
Martin M.M., 1987. Invertebrate-Microbial Interactions: Ingested Fungal Enzymes in Arthropod Biology. Comstock Pub, Ithaca, NY, pp.148.
Martinez, M.A., Delgado, O.D., Breccia, J.D., Baigori, M.D., Sineriz, F., 2002. Revision of the taxonomic position of the xylanolytic Bacillus sp. MIR32 reidentified as Bacillus halodurans and plasmid-mediated transformation of B. halodurans. Extremophiles, 6, 391-395.
Matsumoto, T., 1976. The role of termites in an equatorial rain forest ecosystem of west Malaysia. I. population density, biomass, carbon, nitrogen and calorific content an respiration rate. Oecologia 22, 153-178.
Matoub, M., Rouland, C., 1995. Purification and properties of the xylanases from the termites Macrotermes bellicosus and its symbiotic fungus Termitomyces sp. Comparative Biochemistry and Physiology 112, 629-635.
Miller, G.L., 1959. Use of dinitrosalicyclic acid reagent for the determination of reducing sugars. Analytical Chemistry 31, 426-428.
Mullaney, E.J,, Daly C.B., Ullah, A.H., 2000. Advances in phytase research. Advances in Applied Microbiology 47, 157-199.
Mullaney, E.J., Ullah, A.H., 2003. The term phytase comprises several different classes of enzymes. Biochemical and biophysical research communications 312(1), 179-184.
Noirot, C., 1992. From wood- to humus-feeding: an important trend in termite evolution. Billen, J.,(Eds.), Biology and Evolution of Social Insects, Leuven University Press, Leuven, Belgium. pp. 107-119.
Ohkuma, M., 2003. Termite symbiotic systems: efficient bio-recycling of lignocellulose. Applied Microbiology and Biotechnology 61, 1-9.
Pandey, A., Nigam, P., Soccol, C.R., Soccol, V.T., Singh, D., Mohan, R., 2000. Advances in microbial amylases. Biotechnology and Applied Biochemistry 31, 135-152.
Pason, P., Kyu, K.L., Ratanakhanokchai, K., 2006. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Applied and Environmental Microbiology 72, 2483-2490.
Pastor, F.I.J., Pujol, X., Blanco, A., Vidal, T., Torres, A.L., Diaz, P., 2001. Molecular cloning and characterization of a multidomain endoglucanase from Paenibacillus sp. BP-23: evaluation of its performance in pulp refining. Applied Microbiology and Biotechnology 55, 61-68.
Pèlach, M.A., Pastor, F.J., Puig, J., Vilaseca, F., Mutjé, P., 2003. Enzymic deinking of old newspapers with cellulase. Process Biochemistry 38, 1063-1067.
Qin, Y., Wei, X., Song, X., Qu, Y., 2008. Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. Journal of Biotechnology. 135, 190-195.
Rao, M.B., Tanksale, A.M., Ghatge, M.S., Deshpande, V.V., 1998. Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews 62, 597-635.
Saleem, M., Akhtar, M.S., Jamil, S., 2002. Production of xylanase on natural substrates by Bacillus subtilis. International Journal of Agriculture and Biology, 4, 211-213
Sands,W.A., 1969. The association of termites and fungi. Biology of Termites. In: Krishna, k., Weesner, F.M., (Eds.), Vol. 1, Academic Press, London, pp. 495–524.
Samadni, G., 1991. Pulp bleaching: the race for safer methods. Chemical Engineering 98, 37-43.
Scharf, M.E., Tartar, A., 2008. Termite digestomes as sources for novel lignocellulases. Biofuels Bioproducts Biorefining 2, 540–552.
Singh, A., Hayashi, K., 1995. Microbial cellulases: protein architecture, molecular properties and biosynthesis. Advances in Applied Microbiology 40, 1-44.
Subramaniyan, S., Prema, P., 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiology Letters 183, 1-7.
Sukumaran, R.K., Singhania, R.R., Pandey, A., 2005. Microbial cellulases- Production, applications and challenges. Journal of Scientific and Industrial Research 64, 832-844.
Svendsen, A., 2000. Lipase protein engineering. Biochimica et Biophysica Acta 1543(2), 223-228.
Takao, M., Akiyama, K., Sakai, T., 2002. Purification and characterization of thermostable endo-1,5-α-L-arabinase from a strain of Bacillus thermodenitrificans. Applied and Environmental Microbiology 68, 1639-1646.
Taprab, Y., T., Johjima, Y., Maeda, S., Moriya, S., Trakulnaleamsai, N., Noparatnaraporn, M., Ohkuma, N., Kudo T., 2005. Symbiotic fungi produce laccases potentially involved in phenol degradation in fungus combs of fungus-growing termites in Thailand. Applied and Environmental Microbiology 71, 7696-7704.
Tho, Y. P., 1992. Termites of Peninsular Malaysia. In: Tho, Y.P., Kirton, L.G., (Eds.), Malayan Forest Record, Malaysia, pp. 36.
Tokuda, G., Lo, N., Watanabe, H., Arakawa, G., Matsumoto, T., Noda, H., 2004. Major alteration of the expression site of endogenous cellulases in members of an apical termitelineage. Molecular Ecology 13, 3219-3228.
Trubacek, I., Wiley, A., 1979. Bleaching and pollution. In: Singh, P. S., (Eds.), The bleaching of pulp (3rd ed.), Tappi Press, Atlanta, pp. 423-461.
Ucar, G., Balaban, M., 2004. Accurate determination of the limiting viscosity number of pulps. Wood Chemistry and Technology 38, 139-148.
Viikari, L., Sundquist, J., Kettunen, J., 1991. Xylanase enzymes promote pulp bleaching. Paperi ja Pu- Paper and Timber 73, 384-389.
Veivers, R., Mohlemann, R., Slaytor, M., Leuthold, R.H., Bignell, D.E., 1991. Digestion, dier and polyeth ism in two fungus-growing termites: Macrotermes subbyalinus Rambur.
and M. michaelseni Sjostedt. Journal of Insect Physiology 37, 675-682.
Vyas, S., Lachke, A., 2003. Biodeinking of mixed office waste paper by alkaline active cellulases from alkalotolerant Fusarium sp. Enzyme and Microbial Technology 32, 236-245.
Ward, O.P., 1991. Bioprocessing. Open University Press, Buckingham, U.K.
Welker, N. E., Campbell, L. L., 1967. Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis. Journal of Bacteriology 94, 1124-1130.
Wong, K. Y., Tan, L.U.L., Saddler, J.N., 1988. Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiological Reviews 52, 305-317.
Wood, P. J., Weisz, J., Blackwell, B. A., 1991. Molecular characterization of cereal β-D-glucans. Structural analysis of oat β-D-glucan and rapid structural evaluation of β-D-glucans from different sources by highperformance liquid chromatography of oligosaccharides released by lichenase. Cereal Chemistry 68, 31-39.
Wood, P. J., 2004. Relationships between solution properties of cereal β-glucans and physiological effects-a review. Trends in Food Science and Technology 15, 313-320.
Zukowski, M. 1989. Production of commercially valuable products. In: Harwood., C.R.,(Eds.), Biotechnology Handbook No. 2. Bacillus, Plenum Publishing Corporation, New York, pp. 311-337.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46342-
dc.description.abstract因為碳水化合物水解酵素是發展第二代生質酒精中重要的一環,所以本文著重在探討白蟻窩內微生物酵素降解生質的潛力。本研究從蟻窩中篩選出可培養的108隻細菌,然後根據酵素測試將其分為18組。根據定序的結果它們全部屬於Bacillus屬。且經由酵素測試,發現這些菌種能夠分泌許多酵素,例如:澱粉酶、羧甲基纖維素酶、青苔澱粉酶、木聚醣酶、果膠酶、質酸酶、脂肪酶、蛋白酶。接著,我們從這些可以培養的菌種中挑選出具有較多酵素活性的菌種Bacillus subtilis (TG 12) 和 Bacillus amyloliquefaciens (TG 50),以及蟻窩中所有混合的菌種(TG ALL)。利用相思樹未漂漿和已漂漿與25% (w/v) Luria-Bertani borth (LB)培養基和M9培養基為基質培養,測試這三組菌群在上述環境中對羧甲基纖維素酶、外切型纖維素酶、木聚醣酶、β葡糖苷酶的誘導情形。結果顯示,這三組菌群分泌出大部分酵素活性在25% LB培養基中大於在M9培養基中。且TG 12 和TG 50 的酵素活性比TG ALL 顯著。再者,在這些試驗中發現,活性大小依次如: xylanase, Avicelase, CMCase, β-Glucosidase。此外,透過聚合度和還原糖測試它們在25% LB培養基和M9培養基對相思樹未漂漿和已漂漿的降解能力。TG 12、TG 50和TG ALL 培養在25% LB 培養基可以將相思樹未漂漿的LODP (可降解之最低聚合度)降低至原始聚合度(DP) 的79.5 %, 81.1% 和 79.6%;降低相思樹已漂漿的LODP至 79.9 %, 83.5% 和 87.7%。而培養在M9培養基可以降解相思樹未漂漿的LODP至原始聚合度(DP) 的79.5 %、85.8%、83.6.%;降低相思樹已漂漿的LODP至85.0 %、89.7% 、88.3%。zh_TW
dc.description.abstractBecause carbohydrate hydrolysis enzymes play an important role in bioethanol production, this study aims at the abilities of microorganism derived from termite nest to degrade biomass. 108 culturable bacteria for degradation test were selected, and through the enzyme activity assay they can be classified into 18 groups. After sequencing, all of these species are found to belong to one genus, Bacillus. The enzyme activity assay result shows that many enzymes, such as amylase, CMCase, licheninase, pectinase, xylanase, phytase, lipase and protease, are contained in the bacteria derived from the termite nest. To perform the pulp degradation test, we use three samples of different bacteria configuration to examine various enzyme activities: The sample of all kinds of culturable bacteria derived from termite nest, was coded as TG ALL, Bacillus subtilis and Bacillus amyloliquefaciens were nominated as TG 12 and TG 50. The enzymatic test include CMCase, Avicelase, Xylanase and β-Glucosidase, and the inducing conditions are in a 25% (w/v) Luria-Bertani borth (LB) medium and an M9 medium, respectively. In addition, acacia unbleached and bleached pulp is fed to judge the bleaching effect on the enzyme activity. The results show that enzyme activities are higher in the 25% LB medium than in the M9 medium. Also, TG 12 or TG 50 has higher activities than TG ALL. The ranking of the induced enzyme activity is as follows: xylanase, Avicelase, CMCase, β-Glucosidase. Through the intrinsic viscosity and released reducing sugar tests, we found that all the cultured samples can degrade acacia unbleached pulp DP off to 79.5 %, 81.1% and 79.6%; and degrade acacia bleached pulp DP of to LODP to 79.9 %, 83.5% and 87.7% of LODP in the 25% LB medium. On the other hand, they can degrade acacia unbleached pulp DP off to 79.5 %, 85.8% and 83.6%; and degrade acacia bleached pulp DP of to LODP to 85.0 %, 89.7% and 88.3% of LODP in the M9 medium.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:04:30Z (GMT). No. of bitstreams: 1
ntu-100-R98625042-1.pdf: 4252497 bytes, checksum: bd3a1bbd6b49ee033f8f52c794425c4d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要……………………………………………………………...………. i
Abstract………………………………………………………………….. ii
Table of Contents…………………...…………………………………… iii
List of Tables…………………………………………………………….. v
List of Figures………………………...……………………..................... vi
I
Introduction……………………………………………………………… 1
II
Literature reviews……………………………………………………….. 5
2.1 Termite biology, ecology and digestive physiology……………….. 5
2.2 The relation between enzymes and biomass………………………… 10
2.3 Enzymes of bacteria derived from termite nest……………………... 13
2.4 Bacillus enzymes……………………………………………………. 20
III
Objective…………………………………………………………………. 23
IV
Materials and methods………………………………………………….. 24
1. Fungus combs of Odontotermes formosanus……………………........ 24
2. Characterization of species in termite nest......................................... 24
2.1 Extraction of total DNA from termite nest……….............................. 24
2.2 Bacterial culture of termite nest…………..……………………….... 26
2.3 DNA sequencing and blast……………………………………...…… 28
3. Effect of bacteria derived from termite nest on pulp degradation... 28
3.1 DNSA (dinitrosalicylic acid) assay……...……………..…………… 28
3.2 β-Glucosidase activity assay………………………………………... 29
3.3 Intrinsic viscosity…………………………………………………… 29
3.4 Released reducing Sugar…………………………………………… 30
V
Results and discussion…………………………………………………... 31
1. Extraction of total DNA from termite nest……….………………… 31
2. Bacterial culture of termite nest…………………………………….. 40
2.1 Enzyme activity assay…………………………………………….. 41
3. Effect of bacteria derived from termite nest on pulp degradation... 48
3.1Growth curve of TG 12, TG 50 and TG ALL……………………….. 48
3.2 Enzyme activities analysis…..……………………………………… 50
3.3 Degree of polymerization………………...…………………………. 59
3.4 Released reducing sugar……………………………………………. 65
VI
Conclusion………………………..……………………………………... 68
VII
References……………………………………………………………….. 70
dc.language.isoen
dc.title白蟻窩內細菌相分析及其總菌群與組成菌種降解生質的潛力zh_TW
dc.titleAnalysis of Bacterial Community within Termite Nest and the Potential of Biomass Degradation by its Consortiaen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee杜鎮,張上鎮,劉佳振
dc.subject.keyword白蟻,酵素活性,降解,木質纖維,Bacillus subtilis,Bacillus amyloliquefaciens,zh_TW
dc.subject.keywordtermite,enzyme activities,degradation,lignocellulose,Bacillus subtilis,Bacillus amyloliquefaciens,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2011-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
4.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved