Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46330
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張世宗
dc.contributor.authorNien-Ming Chenen
dc.contributor.author陳年明zh_TW
dc.date.accessioned2021-06-15T05:03:56Z-
dc.date.available2014-09-18
dc.date.copyright2011-09-18
dc.date.issued2011
dc.date.submitted2011-08-23
dc.identifier.citation蔡佳芸 (2009) 胞外 SUMO 化系統之建立與多 SUMO 化機制之探討,碩士論文,國立臺灣大學微生物與生化學研究所
Aguilar RC, Wendland B (2003) Ubiquitin: not just for proteasomes anymore. Curr Opin Cell Biol 15: 184-190
Ayaydin F, Dasso M (2004) Distinct in vivo dynamics of vertebrate SUMO paralogues. Mol Biol Cell 15: 5208-5218
Bailey D, O'Hare P (2004) Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1. J Biol Chem 279: 692-703
Bekes M, Prudden J, Srikumar T, Raught B, Boddy MN, Salvesen GS (2011) The dynamics and mechanism of SUMO chain deconjugation by SUMO-specific proteases. J Biol Chem 286: 10238-10247
Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108: 345-356
Blomster HA, Hietakangas V, Wu J, Kouvonen P, Hautaniemi S, Sistonen L (2009) Novel proteomics strategy brings insight into the prevalence of SUMO-2 target sites. Mol Cell Proteomics 8: 1382-1390
Blomster HA, Imanishi SY, Siimes J, Kastu J, Morrice NA, Eriksson JE, Sistonen L (2010) In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. J Biol Chem 285: 19324-19329
Bylebyl GR, Belichenko I, Johnson ES (2003) The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278: 44113-44120
Capili AD, Lima CD (2007) Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J Mol Biol 369: 608-618
Cheng CH, Lo YH, Liang SS, Ti SC, Lin FM, Yeh CH, Huang HY, Wang TF (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev 20: 2067-2081
Cheng J, Kang X, Zhang S, Yeh ET (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131: 584-595
Chupreta S, Holmstrom S, Subramanian L, Iniguez-Lluhi JA (2005) A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties. Mol Cell Biol 25: 4272-4282
Denuc A, Marfany G (2010) SUMO and ubiquitin paths converge. Biochem Soc Trans 38: 34-39
Dohmen RJ (2004) SUMO protein modification. Biochim Biophys Acta 1695: 113-131
Drag M, Salvesen GS (2008) DeSUMOylating enzymes--SENPs. IUBMB Life 60: 734-742
Figueroa-Romero C, Iniguez-Lluhi JA, Stadler J, Chang CR, Arnoult D, Keller PJ, Hong Y, Blackstone C, Feldman EL (2009) SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J 23: 3917-3927
Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8: 947-956
Gong L, Yeh ET (2006) Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem 281: 15869-15877
Groettrup M, Pelzer C, Schmidtke G, Hofmann K (2008) Activating the ubiquitin family: UBA6 challenges the field. Trends Biochem Sci 33: 230-237
Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, Zheng W, Purohit S, Podolsky RH, Muir A, Wang J, Dong Z, Brusko T, Atkinson M, Pozzilli P, Zeidler A, Raffel LJ, Jacob CO, Park Y, Serrano-Rios M, Larrad MT, Zhang Z, Garchon HJ, Bach JF, Rotter JI, She JX, Wang CY (2004) A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 36: 837-841
Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280: 4102-4110
Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67: 425-479
Ho CW, Chen HT, Hwang J (2011) UBC9 Autosumoylation Negatively Regulates Sumoylation of Septins in Saccharomyces cerevisiae. J Biol Chem 286: 21826-21834
Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7: 215-223
Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30: 405-439
Hochstrasser M (2007) Ubiquitin ligation without a ligase. Dev Cell 13: 4-6
Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458: 422-429
Huang BB, Xiu B, Lu HN, Qin W, Liang AB (2010) [Effect of hypoxia on HIF-1alpha and its sumoylation in Jurkat cells.]. Zhonghua Xue Ye Xue Za Zhi 31: 394-397
Ikeda F, Dikic I (2008) Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep 9: 536-542
Johnson ES, Blobel G (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272: 26799-26802
Kamitani T, Kito K, Nguyen HP, Wada H, Fukuda-Kamitani T, Yeh ET (1998) Identification of three major sentrinization sites in PML. J Biol Chem 273: 26675-26682
Kim JH, Baek SH (2009) Emerging roles of desumoylating enzymes. Biochim Biophys Acta 1792: 155-162
Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A, Johnson ES, Mann M, Sixma TK, Pichler A (2008) Ubc9 sumoylation regulates SUMO target discrimination. Mol Cell 31: 371-382
Knipscheer P, van Dijk WJ, Olsen JV, Mann M, Sixma TK (2007) Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J 26: 2797-2807
Kolli N, Mikolajczyk J, Drag M, Mukhopadhyay D, Moffatt N, Dasso M, Salvesen G, Wilkinson KD (2010) Distribution and paralogue specificity of mammalian deSUMOylating enzymes. Biochem J 430: 335-344
Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L, Zhou J, Zhu J, Raught B, de The H (2008) Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10: 547-555
Li SJ, Hochstrasser M (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol 20: 2367-2377
Li SJ, Hochstrasser M (2003) The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J Cell Biol 160: 1069-1081
Lima CD, Reverter D (2008) Structure of the human SENP7 catalytic domain and poly-SUMO deconjugation activities for SENP6 and SENP7. J Biol Chem 283: 32045-32055
Liu Q, Jin C, Liao X, Shen Z, Chen DJ, Chen Y (1999) The binding interface between an E2 (UBC9) and a ubiquitin homologue (UBL1). J Biol Chem 274: 16979-16987
Martin S, Wilkinson KA, Nishimune A, Henley JM (2007) Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat Rev Neurosci 8: 948-959
Matafora V, D'Amato A, Mori S, Blasi F, Bachi A (2009) Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol Cell Proteomics 8: 2243-2255
Matic I, van Hagen M, Schimmel J, Macek B, Ogg SC, Tatham MH, Hay RT, Lamond AI, Mann M, Vertegaal AC (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 7: 132-144
Meluh PB, Koshland D (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 6: 793-807
Meulmeester E, Melchior F (2008) Cell biology: SUMO. Nature 452: 709-711
Mikolajczyk J, Drag M, Bekes M, Cao JT, Ronai Z, Salvesen GS (2007) Small ubiquitin-related modifier (SUMO)-specific proteases: profiling the specificities and activities of human SENPs. J Biol Chem 282: 26217-26224
Millard SM, Wood SA (2006) Riding the DUBway: regulation of protein trafficking by deubiquitylating enzymes. J Cell Biol 173: 463-468
Miteva M, Keusekotten K, Hofmann K, Praefcke GJ, Dohmen RJ (2010) Sumoylation as a signal for polyubiquitylation and proteasomal degradation. Subcell Biochem 54: 195-214
Mukhopadhyay D, Ayaydin F, Kolli N, Tan SH, Anan T, Kametaka A, Azuma Y, Wilkinson KD, Dasso M (2006) SUSP1 antagonizes formation of highly SUMO2/3-conjugated species. J Cell Biol 174: 939-949
Mukhopadhyay D, Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32: 286-295
Muller S, Hoege C, Pyrowolakis G, Jentsch S (2001) SUMO, ubiquitin's mysterious cousin. Nat Rev Mol Cell Biol 2: 202-210
Okuma T, Honda R, Ichikawa G, Tsumagari N, Yasuda H (1999) In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem Biophys Res Commun 254: 693-698
Pedrioli PG, Raught B, Zhang XD, Rogers R, Aitchison J, Matunis M, Aebersold R (2006) Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat Methods 3: 533-539
Pichler A (2008) Analysis of sumoylation. Methods Mol Biol 446: 131-138
Pickart CM (2000) Ubiquitin in chains. Trends Biochem Sci 25: 544-548
Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8: 610-616
Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ, Tainer JA, McGowan CH, Boddy MN (2007) SUMO-targeted ubiquitin ligases in genome stability. EMBO J 26: 4089-4101
Rodriguez MS, Dargemont C, Hay RT (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276: 12654-12659
Sacher M, Pfander B, Jentsch S (2005) Identification of SUMO-protein conjugates. Methods Enzymol 399: 392-404
Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275: 6252-6258
Salomons FA, Acs K, Dantuma NP (2010) Illuminating the ubiquitin/proteasome system. Exp Cell Res 316: 1289-1295
Sampson DA, Wang M, Matunis MJ (2001) The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 276: 21664-21669
Schwartz DC, Felberbaum R, Hochstrasser M (2007) The Ulp2 SUMO protease is required for cell division following termination of the DNA damage checkpoint. Mol Cell Biol 27: 6948-6961
Sekiyama N, Arita K, Ikeda Y, Hashiguchi K, Ariyoshi M, Tochio H, Saitoh H, Shirakawa M (2010) Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45. Proteins 78: 1491-1502
Shen LN, Geoffroy MC, Jaffray EG, Hay RT (2009) Characterization of SENP7, a SUMO-2/3-specific isopeptidase. Biochem J 421: 223-230
Sigismund S, Polo S, Di Fiore PP (2004) Signaling through monoubiquitination. Curr Top Microbiol Immunol 286: 149-185
Skilton A, Ho JC, Mercer B, Outwin E, Watts FZ (2009) SUMO chain formation is required for response to replication arrest in S. pombe. PLoS One 4: e6750
Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10: 538-546
Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276: 35368-35374
Uchimura Y, Nakamura M, Sugasawa K, Nakao M, Saitoh H (2004) Overproduction of eukaryotic SUMO-1- and SUMO-2-conjugated proteins in Escherichia coli. Anal Biochem 331: 204-206
Ulrich HD (2008) The fast-growing business of SUMO chains. Mol Cell 32: 301-305
van Wijk SJ, Timmers HT (2010) The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J 24: 981-993
Vertegaal AC (2010) SUMO chains: polymeric signals. Biochem Soc Trans 38: 46-49
Watts FZ, Skilton A, Ho JC, Boyd LK, Trickey MA, Gardner L, Ogi FX, Outwin EA (2007) The role of Schizosaccharomyces pombe SUMO ligases in genome stability. Biochem Soc Trans 35: 1379-1384
Weisshaar SR, Keusekotten K, Krause A, Horst C, Springer HM, Gottsche K, Dohmen RJ, Praefcke GJ (2008) Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS Lett 582: 3174-3178
Wilkinson KA, Henley JM (2010) Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 428: 133-145
Wilson VG, Heaton PR (2008) Ubiquitin proteolytic system: focus on SUMO. Expert Rev Proteomics 5: 121-135
Xu J, He Y, Qiang B, Yuan J, Peng X, Pan XM (2008) A novel method for high accuracy sumoylation site prediction from protein sequences. BMC Bioinformatics 9: 8
Xu Z, Au SW (2005) Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1. Biochem J 386: 325-330
Yang M, Hsu CT, Ting CY, Liu LF, Hwang J (2006) Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. J Biol Chem 281: 8264-8274
Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10: 755-764
Yeh ET (2009) SUMOylation and De-SUMOylation: wrestling with life's processes. J Biol Chem 284: 8223-8227
Yun C, Wang Y, Mukhopadhyay D, Backlund P, Kolli N, Yergey A, Wilkinson KD, Dasso M (2008) Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases. J Cell Biol 183: 589-595
Zhao Y, Kwon SW, Anselmo A, Kaur K, White MA (2004) Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. J Biol Chem 279: 20999-21002
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46330-
dc.description.abstract透過SUMO化修飾目標蛋白質或以 SUMO 專一性蛋白酶 (SUMO/Sentrin-specific proteases, SENPs) 進行其可逆性移除乃是細胞內重要的蛋白質修飾作用。與泛素化修飾相同,SUMO 化修飾亦調控了細胞中許多重要功能,包括影響蛋白質間之交互作用與穩定性等。已知泛素可透過不同位置形成聚合長鏈,且其具有不同的生理意義,而 SUMO 化修飾雖被證實亦可形成多 SUMO 長鏈,然其生理角色與形成機制仍不十分清楚。
本論文透過將 SUMO 化修飾所需之各酵素轉形至大腸桿菌中,建立一不受 SENPs 所調節的 SUMO 化修飾反應系統,進行多 SUMO 化修飾的觀察與探討。結果顯示,在所建立的系統中,被認為無法形成聚合長鏈的 SUMO1 可透過非保守性 SUMO 化修飾作用於特定離胺酸形成聚合長鏈,且其生成的位置偏好發生於結構鬆散的 N 端,顯示空間上的障礙乃是影響多 SUMO 長鏈生成的重要因素。為探討各 SENP 對於多 SUMO 長鏈降解之影響,本論文以細胞外 SENP 活性分析發現,除 SENP5 外,各 SENP 其 C 端蛋白酶活性區皆可水解多 SUMO1 及多 SUMO2 長鏈,而其中 SENP1、SENP2 水解兩種 SUMO 長鏈之活性並無顯著差異。由於先前研究多認為 SENP1 及 SENP2 不具有降解多 SUMO 長鏈的能力,本論文所得結果顯示降解多 SUMO 長鏈的活性廣泛存在於大多數 SENP 保守性的活性區中。此外,本研究亦發現 SENP6、SENP7 蛋白酶活性區水解多 SUMO2 長鏈的活性較多 SUMO1 為佳,顯示其活性區與受質專一性有關。
zh_TW
dc.description.abstractThe conjugation of SUMO moiety by SUMO conjugation system and the removal of the moiety by SENPs are important aspects of protein modification in cells. Analogous to ubiquitination, sumoylation regulates many physiological functions of proteins. It has been demonstrated that ubiquitin can form various polymeric chains via specific lysines to execute distinct functions. Although certain types of polymeric SUMO chains have been described, their roles in biological processes and the mechanism of formation remain unclear.
In this study, I transformed the enzymes required for sumoylation into Escherichia coli BL21 (DE3) to establish a sumoylation system, which lacks SENP-mediated desumoylation for analyzing the formation of polymeric SUMO chains. The results suggest that SUMO1, which has been considered unable to form polymers, is able to form polymeric chains mainly through self-conjugation at specific lysine residues nearby the flexible N terminus, indicating that the steric hindrance is a key factor modulating polySUMO chains formation. To investigate the character of polySUMO degradation catalyzed by SENPs, I examined the degradation of polySUMO chains by conducting the in vitro SENP activity analysis. The data showed that the catalytic domains of all SENPs, except SENP5, are able to deconjugate both polySUMO1 chains and polySUMO2 chains. Moreover, the catalytic core of SENP1 and SENP2 present similar preference toward polySUMO1 and polySUMO2 chains. I also found that the catalytic cores of SENP6 and SENP7 exhibit an exquisite substrate selectivity that polySUMO2 chains are deconjugated more efficiently than polySUMO1 chains.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:03:56Z (GMT). No. of bitstreams: 1
ntu-100-R98b47204-1.pdf: 17050382 bytes, checksum: 7e77cc769daa62a00c1155d6030fbf41 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要 i
Abstract ii
縮寫表…… iii
第一章 緒論 1
1.1 類泛素蛋白質 1
1.2 SUMO 化作用 1
1.2.1 SUMO 及其修飾機制 1
1.2.2 多 SUMO 聚合長鏈 3
1.2.3 SUMO 化修飾之生理作用 4
1.3 SUMO專一性蛋白酶 (SENPs) 6
1.3.1 SENPs 分類 6
1.3.2 SENPs 催化活性與作用機制 7
1.3.3 SENPs 之生理作用 7
1.4 研究動機與方向 8
第二章 材料與方法 10
2.1 質體建構 10
2.1.1 野生型 SUMO1 及其單一離胺酸突變株之重組質體建構 10
2.1.2 野生型 SUMO1 及 SUMO2 聚合長鏈表現質體 10
2.1.3 螢光蛋白標誌之多 SUMO1 長鏈表現質體 11
2.1.4 SUMO 專一性蛋白酶表現質體 11
2.2 大腸桿菌 SUMO 化修飾系統 12
2.3 重組蛋白質表現與純化 12
2.3.1 野生型 SUMO1 及其突變株聚合長鏈的表現與純化 12
2.3.2 螢光蛋白標誌之SUMO1表現與純化 13
2.3.3 螢光蛋白標誌之多 SUMO1 長鏈的表現與純化 13
2.3.4 各 SENP 之表現與純化 13
2.4 SENP之活性分析 14
2.5 以螢光共振能量轉移分析 SENP 水解多 SUMO1 長鏈之活性 14
第三章 結果 16
3.1各離胺酸對於多 SUMO1 長鏈生成之影響 16
3.1.1 以 pQE30-His-SUMO1 為表現質體 16
3.1.2 以 pET30a-His-SUMO1 為表現質體 16
3.1.3 以 pET30a-HA-SUMO1 為表現質體 17
3.2各 SENP 對於多 SUMO 長鏈之水解活性分析 18
3.2.1 SENP3 重組質體之建構 18
3.2.2 多 SUMO1 及多SUMO2 長鏈及各 SENP 之表現與純化 19
3.2.3 SENPs 對於多 SUMO長鏈之水解活性分析 19
3.3 SENP1 對螢光蛋白標誌之多 SUMO1 長鏈水解活性 19
3.3.1 螢光蛋白標誌之多 SUMO1 長鏈的純化 19
3.3.2 以免疫染色法檢視 SENP1 水解受質之活性 20
3.3.3 以螢光共振能量轉移作為指標分析 SENP1 水解受質之活性 20
第四章 討論 22
4.1多 SUMO1 長鏈的生成屬於非保守性 SUMO 化修飾 22
4.2多 SUMO1 長鏈的生成與特定胺基酸有關 23
4.3 SUMO 化修飾系統亦為 SUMO 化修飾調控之標的 24
4.4除 SENP5, 各SENP 活性區皆可降解多 SUMO 長鏈 24
4.5 SENP1 及 SENP2 之 N 端會影響其受質辨識及 chain editing 的能力 25
4.6 SENP 6與 SENP7 蛋白酶活性區會影響其受質專一性 25
4.7無法順利透過螢光共振能量轉移分析 SENPs 之活性 26
第五章 未來展望 28
參考文獻 29
表與圖……………………………………………………………………………………………………………………….35
附錄….……………………………………………………………………………………………………………………....56
dc.language.isozh-TW
dc.subjectSUMO專一性蛋白&#37238zh_TW
dc.subject聚合長鏈zh_TW
dc.subjectSUMO化修飾zh_TW
dc.subjectPolymeric chainsen
dc.subjectSUMOen
dc.subjectSENPsen
dc.titleSUMO1自我長鏈聚合之研究與SENPs降解多SUMO長鏈
之性質分析
zh_TW
dc.titleStudy of the Self-polymerization of SUMO1 and Characterization of the PolySUMO Chain Degradation Catalyzed by SENPsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊榮輝,陳威戎,張麗冠,鄭貽生
dc.subject.keywordSUMO化修飾,SUMO專一性蛋白&#37238,聚合長鏈,zh_TW
dc.subject.keywordSUMO,SENPs,Polymeric chains,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2011-08-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
16.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved