請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46305完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姜祖恕 | |
| dc.contributor.author | Wei-Da Chen | en |
| dc.contributor.author | 陳韋達 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:02:41Z | - |
| dc.date.available | 2010-08-02 | |
| dc.date.copyright | 2010-08-02 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-27 | |
| dc.identifier.citation | [1] R.Z.KHASMINSKII and G. YIN, Asymptotic series for singularly perturbed
Kolmogorov-Fokker-Planck Equations, Siam J. Appl. Math. [2] A.BENSOUSSAN, Perturbation Methods in Optimal Control, Wiley, Chichester, 1988. [3] G. YIN, Q. Zhang, Continuous Time Markov Chains and Applications. [4] H. J. Kushner, Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory, MIT Press, Cambridge, MA,1984. [5] D.G. ARONSON, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.,ⅩⅩⅠⅠ(1968), pp. 607-694. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46305 | - |
| dc.description.abstract | 給定一個隨機擴散過程。這個擴散過程具有兩個時間尺度。一個是改變極快速的尺度,而另一個是比較慢的尺度。在本論文裡,我們有興趣的是擴散過程的停留時間之函數當ε →0。在我們的直覺中,當ε →0我們認為這個擴散過程會被比較快的部份所控制。為了使我們的直覺更加明確,我們使用這個擴散過程的機率密度函數的逼近式去估計當ε →0時的行為。用以這個擴散過程的機率密度函數的逼近式,我們將證明這個擴散過程的停留時間之函數的大數法則以及漸進常
態。 | zh_TW |
| dc.description.abstract | Let Xε (·) be a diffusion process satisfying. This diffusion process has two time scales. One is a rapidly changing scale, and the other is a slowly varying scale. In this paper, we are interested in a function of the occupation time of when ε → 0. In our intuition, we think this diffusion will be driven by its fast part when ε → 0. To make our intuition more precisely, we use the asymptoticity for the density of this diffusion to estimate its behavior when ε →0. By virtue of asymptoticity for the density of this diffusion, we will show the law of large
numbers and the asymptotic normality of a function of the occupation time of this process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:02:41Z (GMT). No. of bitstreams: 1 ntu-99-R97221011-1.pdf: 3602864 bytes, checksum: 17664824503d23efa3df55edaba520ec (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要i
Abstract ii 1 Introduction 1 2 Review 4 3 New Asymptoticity 10 3.1 Stronger Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Law of Large Numbers 15 4.1 The Limit of EZε (t, f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 The Limit of Zε (t, f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5 The Mixing Property 23 5.1 The Definition of The Mixing Property . . . . . . . . . . . . . . . . . . . . . 23 5.2 The Mixing Property of Xε (·) . . . . . . . . . . . . . . . . . . . . . . . . . 24 6 Asymptotic Normality 32 6.1 The Limits of Mean and Variance of nε (t, f ) . . . . . . . . . . . . . . . . . . 33 6.2 The Tightness of {nε (t, f )} . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.3 The Property of {n(·)} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奇異擾動擴散 | zh_TW |
| dc.subject | Singularly perturbed diffusion processes | en |
| dc.title | 奇異擾動擴散的漸進常態 | zh_TW |
| dc.title | Asymptotic Normality for Singularly Perturbed Diffusion Processes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張志中 | |
| dc.contributor.oralexamcommittee | 謝南瑞,許順吉 | |
| dc.subject.keyword | 奇異擾動擴散, | zh_TW |
| dc.subject.keyword | Singularly perturbed diffusion processes, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
