請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4627
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛景中(Jing-Jong Shyue) | |
dc.contributor.author | Yi-Hsuan Chu | en |
dc.contributor.author | 朱怡璇 | zh_TW |
dc.date.accessioned | 2021-05-14T17:44:19Z | - |
dc.date.available | 2017-09-02 | |
dc.date.available | 2021-05-14T17:44:19Z | - |
dc.date.copyright | 2015-09-02 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-29 | |
dc.identifier.citation | 1. Leggett, G. J.; Vickerman, J. C.; Briggs, D.; Hearn, M. J., Surface studies by static eecondary ion mass-spectrometry - cluster ion formation studied by Tandem mass-spectrometric techniques. J Chem Soc Faraday T 1992, 88 (3), 297-309.
2. Senoner, M.; Unger, W. E. S., SIMS imaging of the nanoworld: applications in science and technology. Journal of Analytical Atomic Spectrometry 2012, 27 (7), 1050. 3. Adern, P., Time-of-flight secondary ion mass spectrometry (ToF-SIMS) -theory and practice. 2013. 4. Mahoney, C. M., Cluster secondary ion mass spectrometry of polymers and related materials. Mass spectrometry reviews 2010, 29 (2), 247-93. 5. Cheng, J.; Wucher, A.; Winograd, N., Molecular depth profiling with cluster ion beams. The journal of physical chemistry. B 2006, 110 (16), 8329-36. 6. Gillen, G.; Simons, D. S.; Williams, P., Molecular ion imaging and dynamic secondary ion mass spectrometry of organic compounds. Analytical chemistry 1990, 62 (19), 2122-30. 7. Mahoney, C. M., Cluster Secondary Ion Mass Spectrometry: Principles and Applications, First Edition. 2013, 117-205. 8. Vickerman, J. C.; Gilmore, I. S., Surface Analysis – The Principal Techniques, 2nd Edition. 2009, 113-203. 9. Stapel, D.; Brox, O.; Benninghoven, A., Secondary ion emission from arachidic acid LB-layers under Ar+, Xe+, Ga+ and SF5+ primary ion bombardment. 1999, 140, 156-167. 10. Wucher, A., A simple erosion dynamics model of molecular sputter depth profiling. Surface and Interface Analysis 2008, 40 (12), 1545-1551. 11. Shen, K.; Wucher, A.; Winograd, N., Molecular Depth Profiling with Argon Gas Cluster Ion Beams. The Journal of Physical Chemistry C 2015, 119 (27), 15316-15324. 12. Rol, P. K.; Fluit, J. M.; Kistemaker, J., Theoretical aspects of cathode sputtering in the energy range of 5-25 keV. Physica 1960, 26, 1009-1011. 13. 奈米檢測技術, 國家實驗研究院. 2009. 14. Andersen, H. H.; Bay, H. L., Nonlinear effects in heavy-ion sputtering. Journal of Applied Physics 1974, 45 (2), 953. 15. Andersen, H. H.; Bay, H. L., Heavy-ion sputtering yields of gold: Further evidence of nonlinear effects. Journal of Applied Physics 1975, 46 (6), 2416. 16. Thompson, D. A.; Johar, S. S., Nonlinear sputtering effects in thin metal films. Applied Physics Letters 1979, 34 (5), 342. 17. Johar, S. S.; Thompson, D. A., Spike effects in heavy-ion sputtering of Ag. Au and Pt thin films. Surface Science 1979, 90, 319-330. 18. Wong, S. S.; Stoll, R.; Rollgen, F. W., Ionization of organic molecules by fast molecular ion bombardment. Z. Naturforsch 1982, 37a, 718-719. 19. Davies, N.; Weibel, D. E.; Blenkinsopp, P.; Lockyer, N.; Hill, R.; Vickerman, J. C., Development and experimental application of a gold liquid metal ion source. Applied Surface Science 2003, 223-227. 20. Kollmer, F., Cluster primary ion bombardment of organic materials. Applied Surface Science 2004, 231-232, 153-158. 21. Stapel, D.; Brox, O.; Benninghoven, A., Secondary ion emission from arachidic acid LB-layers under Ar+, Xe+, Ga+ and SF5+ primary ion bombardment. Applied Surface Science 1999, 140, 156-167. 22. Gillen, G.; Roberson, S., Preliminary evaluation of an SF5+ polyatomic primary ion beam for analysis of organic thin films by secondary ion mass spectrometry. Rapid communications in mass spectrometry : RCM 1998, 12, 1303-1312. 23. Weibel, D.; Wong, S.; Lockyer, N.; Blenkinsopp, P.; Hill, R.; Vickerman, J. C., A C60 primary ion beam system for time of flight secondary ion mass spectrometry: its development and secondary ion yield characteristics. Analytical chemistry 2003, 75 (2003), 1754-1764. 24. Yamada, I.; Matsuo, J.; Toyoda, N.; Kirkpatrick, A., Materials processing by gas cluster ion beams. Materials Science and Engineering R 2001, 34, 231-295. 25. Rabbani, S.; Barber, A. M.; Fletcher, J. S.; Lockyer, N. P.; Vickerman, J. C., TOF-SIMS with argon gas cluster ion beams: a comparison with C60+. Analytical chemistry 2011, 83 (10), 3793-800. 26. Matsuo, J.; Okubo, C.; Seki, T.; Aoki, T.; Toyoda, N.; Yamada, I., A new secondary ion mass spectrometry (SIMS) system with high-intensity cluster ion source. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2004, 219-220, 463-467. 27. Yamada, I., 20 years history of fundamental research on gas cluster ion beams, and current status of the applications to industry. 2006, 147-154. 28. Yamada, I., A short review of ionized cluster beam technology. Nucl. Instr. and Meth. in Phys. Res. 1995, B 99, 240-243. 29. Mochiji, K., Enhancement of intact- ion yield and surface sensitivity by argon cluster. Anal Bioanal Techniques 2011. 30. Ninomiya, S.; Nakata, Y.; Honda, Y.; Ichiki, K.; Seki, T.; Aoki, T.; Matsuo, J., A fragment-free ionization technique for organic mass spectrometry with large Ar cluster ions. Applied Surface Science 2008, 255 (4), 1588-1590. 31. Miyayama, T.; Sanada, N.; Bryan, S. R.; Hammond, J. S.; Suzuki, M., Removal of Ar+ beam-induced damaged layers from polyimide surfaces with argon gas cluster ion beams. Surface and Interface Analysis 2010, 42 (9), 1453-1457. 32. Yun, D. J.; Jung, C.; Lee, H. I.; Kim, K. H.; Kyoung, Y. K.; Benayad, A.; Chung, J., Damage-Free Photoemission Study of Conducting Carbon Composite Electrode Using Ar Gas Cluster Ion Beam Sputtering Process. Journal of the Electrochemical Society 2012, 159 (7), H626-H632. 33. Ninomiya, S.; Ichiki, K.; Yamada, H.; Nakata, Y.; Seki, T.; Aoki, T.; Matsuo, J., Precise and fast secondary ion mass spectrometry depth profiling of polymer materials with large Ar cluster ion beams. Rapid communications in mass spectrometry : RCM 2009, 23 (11), 1601-6. 34. Delcorte, A.; Restrepo, O. A.; Czerwinski, B.; Garrison, B. J., Surface sputtering with nanoclusters: the relevant parameters. Surface and Interface Analysis 2013, 45 (1), 9-13. 35. Shard, A. G.; Brewer, P. J.; Green, F. M.; Gilmore, I. S., Measurement of sputtering yields and damage in C60 SIMS depth profiling of model organic materials. Surface and Interface Analysis 2007, 39 (4), 294-298. 36. Ninomiya, S.; Ichiki, K.; Yamada, H.; Nakata, Y.; Seki, T.; Aoki, T.; Matsuo, J., Molecular depth profiling of multilayer structures of organic semiconductor materials by secondary ion mass spectrometry with large argon cluster ion beams. Rapid communications in mass spectrometry : RCM 2009, 23 (20), 3264-8. 37. Ninomiya, S.; Ichiki, K.; Yamada, H.; Nakata, Y.; Seki, T.; Aoki, T.; Matsuo, J., Analysis of organic semiconductor multilayers with Ar cluster secondary ion mass spectrometry. Surface and Interface Analysis 2011, 43 (1-2), 95-98. 38. Yang, L.; Seah, M. P.; Gilmore, I. S., Sputtering Yields for Gold Using Argon Gas Cluster Ion Beams. The Journal of Physical Chemistry C 2012, 116 (44), 23735-23741. 39. Delcorte, A.; Medard, N.; Bertrand, P., Organic Secondary Ion Mass Spectrometry sensitivity enhancement by gold deposition. Analytical chemistry 2002, 74, 4955-4968. 40. Adriaensen, L.; Vangaever, F.; Gijbels, R., Metal-assisted secondary ion mass spectrometry: influence of Ag and Au deposition on molecular ion Yields. Analytical chemistry 2004, 76, 6777-6785. 41. Inoue, M.; Murase, A., Reduction of matrix effects in TOF-SIMS analysis by metal-assisted SIMS (MetA-SIMS). Surface and Interface Analysis 2005, 37 (12), 1111-1114. 42. Wehbe, N.; Heile, A.; Arlinghaus, H. F.; Bertrand, P.; Delcorte, A., Effects of metal nanoparticles on the secondary ion yields of a model alkane molecule upon atomic and polyatomic projectiles in secondary ion mass spectrometry. Analytical chemistry 2008, 80 (16), 6235-44. 43. Kim, Y. P.; Lee, T. G., Secondary ions mass spectrometric signal enhancement of peptides on enlarged-gold nanoparticle surfaces. Analytical chemistry 2012, 84 (11), 4784-8. 44. Kim, Y. P.; Oh, E.; Hong, M. Y.; Lee, D.; Han, M. K.; Shon, H. K.; Moon, D. W.; Kim, H. S.; Lee, T. G., Gold nanoparticle-enhanced secondary ion mass spectrometry imaging of peptides on self-assembled monolayers. Analytical chemistry 2006, 78, 1913-1920. 45. McArthur, S. L.; Vendettuoli, M. C.; Ratner, B. D.; Castner, D. G., Methods for generating protein molecular ions in ToF-SIMS. Langmuir : the ACS journal of surfaces and colloids 2004, 20 (9), 3704-9. 46. English, R. D.; Van Stipdonk, M. J.; Sabapathy, R. C.; Crooks, R. M.; Schweikert, E. A., Characterization of photooxidized self-assembled monolayers and bilayers by spontaneous desorption mass spectrometry. Analytical chemistry 2000, 72 (24), 5973-80. 47. Svara, F. N.; Kiss, A.; Jaskolla, T. W.; Karas, M.; Heeren, R. M., High-reactivity matrices increase the sensitivity of matrix enhanced secondary ion mass spectrometry. Analytical chemistry 2011, 83 (21), 8308-13. 48. Luxembourg, S. L.; McDonnell, L. A.; Duursma, M. C.; Guo, X.; Heeren, R. M., Effect of local matrix crystal variations in matrix-assisted ionization techniques for mass spectrometry. Analytical chemistry 2003, 75, 2333-2341. 49. Wu, K. J.; Odom, R. W., Matrix-enhanced secondary ion mass spectrometry a method for molecular analysis of solid surfaces. Analytical chemistry 1996, 68, 873-882. 50. Conlan, X. A.; Lockyer, N. P.; Vickerman, J. C., Is proton cationization promoted by polyatomic primary ion bombardment during time-of-flight secondary ion mass spectrometry analysis of frozen aqueous solutions? Rapid communications in mass spectrometry : RCM 2006, 20 (8), 1327-34. 51. Piwowar, A. M.; Fletcher, J. S.; Kordys, J.; Lockyer, N. P.; Winograd, N.; Vickerman, J. C., Effects of cryogenic sample analysis on molecular depth profiles with TOF-secondary ion mass spectrometry. Analytical chemistry 2010, 82 (19), 8291-9. 52. Piehowski, P. D.; Kurczy, M. E.; Willingham, D.; Parry, S.; Heien, M. L.; Winograd, N.; Ewing, A. G., Freeze-etching and vapor matrix deposition for ToF-SIMS imaging of single cells. Langmuir : the ACS journal of surfaces and colloids 2008, 24 (15), 7906-11. 53. Franzreb, K.; Lörinčík, J.; Williams, P., Quantitative study of oxygen enhancement of sputtered ion yields. I. Argon ion bombardment of a silicon surface with O2 flood. Surface Science 2004, 573 (2), 291-309. 54. Kudriatsev, Y.; Villegas, A.; Gallardo, S.; Ramirez, G.; Asomoza, R.; Mishurnuy, V., Cesium ion sputtering with oxygen flooding: Experimental SIMS study of work function change. Applied Surface Science 2008, 254 (16), 4961-4964. 55. Schmitt, A. K.; Chamberlain, K. R.; Swapp, S. M.; Harrison, T. M., In situ U–Pb dating of micro-baddeleyite by secondary ion mass spectrometry. Chemical Geology 2010, 269 (3-4), 386-395. 56. Li, Q.-L.; Li, X.-H.; Liu, Y.; Tang, G.-Q.; Yang, J.-H.; Zhu, W.-G., Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. Journal of Analytical Atomic Spectrometry 2010, 25 (7), 1107. 57. Witte, H. D.; Conard, T.; Vandervorst, W.; Gijbels, R., SIMS analysis of oxynitrides: evidence for nitrogen diffusion induced by oxygen flooding.pdf>. Surface and interface analysis : SIA 2000, 29, 761-765. 58. Liao, H. Y.; Lin, K. Y.; Kao, W. L.; Chang, H. Y.; Huang, C. C.; Shyue, J. J., Enhancing the sensitivity of molecular secondary ion mass spectrometry with C60+-O2+ cosputtering. Analytical chemistry 2013, 85 (7), 3781-8. 59. MacDonald, R. J.; King, B. V., Surface Analysis Methods in Materials Science, second edition. 127-154. 60. Friedbacher, G.; Bubert, H., Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications, Second Edition. 2011, 141-159. 61. Pol, J.; Strohalm, M.; Havlicek, V.; Volny, M., Molecular mass spectrometry imaging in biomedical and life science research. Histochemistry and cell biology 2010, 134 (5), 423-43. 62. Hoffmann, E. D.; Stroobant, V., Mass Spectrometry - Principles and applications 3th 2007, 126-139. 63. Hoffmann, E. D.; Stroobant, V., Mass Spectrometry - Principles and applications 3th 2007, 175-177. 64. Time-of-flight mass spectrometry. 2011. 65. Gross, J. H., Mass Spectrometry. 2004, 175-179. 66. Friedbacher, G.; Bubert, H., Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications, Second Edition. 2011, 443-463. 67. L., A. T.; Feldman, L. C.; Mayer, J. W., Fundamentals of Nanoscale Film Analysis. 2007, 284-290. 68. JPK Instruments NanoWizard® Handbook. 2012, 5-7. 69. Advantages of the TRIFT Analyzer for Imaging and Spectroscopy in the PHI nano TOF. 2012, 46. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4627 | - |
dc.description.abstract | 氣體簇離子團 (gas cluster ions)是由許多原子共同組成的離子團,做為濺射離子源時,由於其在相同電壓下,濺射能量會分散於各粒子且集中於分析物表面,可使表面飛濺出的二次離子產率增加,亦不易形成小片段分子,因此近年來引起廣大的研究,已被證明是分析生物樣本及軟性材料頗具發展潛力的一項技術。但一般而言,分子量大的訊號通常較弱,將不利於分析,因此,若可以增強這些分子離子訊號,則可使SIMS的應用更為廣泛。
本研究以聚對苯二甲酸乙二酯 (polyethylene terephthalate, PET)為基板,使用時間飛行二次離子質譜 (ToF-SIMS)偵測表面二次離子,比較Ar2500簇離子源與使用低能量O2離子源共同濺射PET基板時,觀察其特徵破片的訊號強度變化,主要目的為在作濺射的同時,不僅可以保存其化學結構不受破壞,也能增強其飛濺出的二次正離子產率,在最後,也分別使用表面輪廓儀與原子力顯微鏡,量取濺射速率及濺射後的表面形貌。 研究過程中觀察到,單獨以Ar2500+或O2+濺射時,分子離子訊號強度均隨濺射時間有降低的現象,但當利用共濺射技術,由於濺射速率的提升,以及表面受氧化所形成的OH可促進質子之交換,因此整體的訊號強度達到穩定,實驗也顯示與低電壓的O2+做共濺射時,隨著O2+電流密度的增加,氧增益的效應逐漸顯現出來,相對的於高電壓下,越高電流密度的O2+做共濺射時,反而因有額外的表面損傷未能完全移除,訊號增益的強度因此受壓抑。 綜合以上討論,本實驗發現使用10 kV 2×10-6 A/cm2 Ar2500+與低電壓、高電流密度 (200V 32×10-5 A/cm2) 或高電壓、低電流密度 (500V 2×10-5 A/cm2) 的O2+進行共濺射時,可得到理想的縱深分布分析。 | zh_TW |
dc.description.abstract | Over the last decade, cluster ion beams displays its capability for depth profiling organic materials and biological specimens. Compared with monatomic ion beams, cluster ion beams possess non-linear enhancement of sputter yield, minimum damage accumulation and generate high mass fragments during sputtering. These properties allow the successful secondary ion mass spectrometry (SIMS) analysis of soft materials beyond the static limit. While the intensity of molecular ions of high mass is still low, enhancing the intensity of these secondary ions while preserve samples in their original state is the key to high sensitivity molecular depth profiles. In this work, bulk poly(ethylene terephthalate) (PET) was used as modeling materials and was analyzed using a time-of-flight (ToF) SIMS with a pulsed Bi32+ primary ion. 10 kV Ar2500+ gas cluster ion beam (GCIB) and low kinetic energy (100-500 V) oxygen ion beam (O2+) were employed to co-sputtering for depth profile and examining the effect of beam parameters to the yield of positive secondary ions. The result of depth profile showed that the characteristic signal of PET declines steadily during GCIB sputtering. In other words, damage accumulation was observed. On the other hand, the secondary ion intensity can reach a steady state and was enhanced during GCIB-O2+ cosputtering. Since the secondary ions were generated by a fixed Bi32+ bombardment and was independent to the sputtering beam parameter, this enhancement of intensity is attributed to the enhanced ionization yield. This enhanced ionization yield is attributed to the oxidation of molecules and the formation of hydroxyl group that serve as a proton donator to particles emitted from the surface. The enhanced ion intensity also masked the damage to the chemical structure hence steady signal intensity is obtained. However, as O2+ is known to alter chemical structure and damage accumulation is apparent beyond the static limit, high kinetic voltage and fluence leads to the suppression of molecular ion intensity. Nevertheless, with optimized Ar2500+ and O2+ ratio that leads to enhanced ionization yield while the damage is masked, improved depth profile is obtained. The results indicated that optimized GCIB-O2+ cosputtering could provide improved depth profiles from soft materials in terms of sensitivity and preserve the chemical structural in the remaining surface. | en |
dc.description.provenance | Made available in DSpace on 2021-05-14T17:44:19Z (GMT). No. of bitstreams: 1 ntu-104-R02527023-1.pdf: 8533771 bytes, checksum: 12d22cd70218522bc6c80453c1a7a3ea (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 4 2.1 二次離子質譜儀 (Secondary Ion Mass Spectrometry, SIMS) 4 2.1.1 二次離子質譜儀之基本原理 4 2.1.2二次離子質譜儀之規格與特徵 5 2.2 縱深分布分析 6 2.2.1 SIMS用於縱深分析及侵蝕模式 6 2.2.2 損傷累積 (damage cross section) 9 2.2.3 濺射率 (sputter yield) 11 2.3 單原子、多原子及簇離子源用於二次離子質譜儀的比較 13 2.3.1 簇離子與多原子離子應用於二次離子質譜儀的演進 13 2.3.2 多原子離子與簇離子濺射機制 17 2.4 氣體簇粒子束於二次離子質譜儀的應用 (Gas Cluster Ion Beams, GCIB) 20 2.4.1 氣體簇粒子束於SIMS中之優勢─二次離子產率提高 21 2.4.2 氣體簇粒子束於SIMS中之優勢─損傷機率低 23 2.4.3 氣體簇粒子束於SIMS中之優勢─有利縱深分布分析 25 2.5 增強二次離子訊號的方法與機制 29 第三章 實驗及儀器介紹 33 3.1實驗基材 33 3.2實驗儀器簡介 33 3.2.1飛行時間二次離子質譜儀 (Time-of-Flight Secondary Ion Mass Spectrometry, ToF-SIMS ) 33 3.2.1.1 一次離子源 (primary ion source) 34 3.2.1.2 質量分析器 (mass analyzer) 37 3.2.1.3 偵測器 (ion detector) 40 3.2.2原子力顯微鏡 (Atomic Force Microscope) 42 3.2.3探針式表面輪廓儀 (Stylus Surface Profilometer) 45 3.3實驗步驟 46 3.3.1試片清洗及製備 46 3.3.2 ToF-SIMS分析 46 3.3.3 AFM 量測 48 3.3.4 Stylus Surface Profilometer 量測 48 第四章 實驗結果與討論 49 4.1所選用特徵破片 49 4.2 比較O2離子源的縱深分析結果 50 4.2.1 O2+離子源之電壓對訊號的影響 50 4.2.2 O2+離子源之電流密度對訊號的影響 56 4.3 共濺射離子源在不同條件下進行縱深分析結果比較 61 4.3.1 共濺射O2+離子源之電壓對訊號的影響 64 4.3.2 共濺射O2+離子源之電流密度對訊號的影響 71 4.4 濺射速率與表面形貌結果之比較 75 第五章 結論 80 Reference 81 | |
dc.language.iso | zh-TW | |
dc.title | 以Ar2500+-O2+共濺射增強軟材料之二次分子離子質譜 | zh_TW |
dc.title | Enhancement of molecular ion intensity by Ar2500+-O2+ cosputtering for depth profiling of soft materials in secondary | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 虞邦英,康佳正 | |
dc.subject.keyword | Ar2500+-O2+ 共濺射,縱深分布分析,表面分析,靜態二次離子質譜術,聚對苯二甲酸乙二酯, | zh_TW |
dc.subject.keyword | Ar2500+-O2+ co-sputter,depth profile,surface analysis,Static-SIMS,PET, | en |
dc.relation.page | 88 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2015-07-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf | 8.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。