Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46279Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蘇銘嘉(Ming-Ja Su) | |
| dc.contributor.author | Shih-Han Chiu | en |
| dc.contributor.author | 邱詩涵 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:01:24Z | - |
| dc.date.available | 2015-09-13 | |
| dc.date.copyright | 2010-09-13 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-28 | |
| dc.identifier.citation | 1. Mohler ML, He Y, Wu Z, Hwang DJ, Miller DD. Recent and emerging anti-diabetes targets. Med Res Rev. 2009; 29:125-95.
2. Bureau of Health Promotion DoH, R.O.C (Taiwan): Diabetes Prevention and Future in Taiwan. Bureau of Health Promotion DoH, R.O.C(Taiwan), Ed.,2003. 3. Brunton LL: GOODMAN& GILMAN’S THE PHARMACOLOGICAL BASIS OF THERAPEUTICS. McGRAW-HILL, Medical Publishing Division, 2006. 4. Davis JM, Murphy EA, Carmichael MD. Effects of the dietary flavonoid quercetin upon performance and health. Curr Sports Med Rep. 2009; 8:206-13. 5. Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol. 2007; 45:2179-205. 6. Davis JM, Murphy EA, Carmichael MD, Davis B. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009; 296: R1071-7. 7. Debiaggi M, Tateo F, Pagani L, Luini M, Romero E. Effects of propolis flavonoids on virus infectivity and replication. Microbiologica. 1990; 13:207-13. 8. Chiang LC, Chiang W, Liu MC, Lin CC. In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J. Antimicrob. Chemother. 2003; 52:194-8. 9.Kaul TN, Middleton E, Ogra PL. Antiviral effect of flavonoids on human viruses. J. Med. Virol. 1985; 15:71-9. 10.Chen L, Li J, Luo C, Liu H, Xu W, Chen G, Liew OW, Zhu W, Puah CM, Shen X, Jiang H. Binding interaction of quercetin-3-betagalactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features. Bioorganic Medicinal Chemistry. 2006; 14:8295-306. 11. Chiang LC, Chiang W, Liu MC, Lin CC. In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J. Antimicrob.Chemother. 2003; 52:194-8. 12. Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005; 26:343-56. 13. Nair MP, Kandaswami C, Mahajan S, Chadha KC, Chawda R, Nair H, Kumar N, Nair RE, Schwartz SA. The flavonoid, quercetin, differentially regulates Th-1 (IFNgamma) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Biochimica Biophysica Acta. 2002; 1593:29-36. 14. Alvarez P, Alvarado C, Puerto M, Schlumberger A, Jiménez L, De la Fuente M. Improvement of leukocyte functions in prematurely aging mice after five weeks of diet supplementation with polyphenol-rich cereals. Nutrition. 2006; 22:913-21. 15. Reid MB. Free radicals and muscle fatigue: of ROS, canaries, and the IOC. Free Radic. Biol. Med. 2008; 44:169-79. 16. McAnulty SR, McAnulty LS, Nieman DC, Quindry JC, Hosick PA, Hudson MH, Still L, Henson DA, Milne GL, Morrow JD, Dumke CL, Utter AC, Triplett NT, Dibarnardi A. Chronic quercetin ingestion and exercise-induced oxidative damage and inflammation. Appl. Physiol. Nutr. Metab. 2008; 33:254-62. 17. Alexander SP. Flavonoids as antagonists at A1 adenosine receptors. Phytother. Res. 2006; 20:1009-12. 18. Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA.Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003; 284:R399-404. 19. Rasbach K, Schnellmann RG. Isoflavones promote mitochondrial biogenesis. J. Pharmacol. Exp. Ther. 2008; 325:536-43. 20. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1 alpha. Cell. 2006; 127:1109-22. 21. Davis JM, Murphy EA, Carmichael MD, Davis B. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009; 296:R1071-7. 22. Nuraliev Iu N, Avezov GA. The efficacy of quercetin in alloxan diabetes. Eksp. Klin. Farmakol. 1992; 55:42-4. 23. Rivera L, Morón R, Sánchez M, Zarzuelo A, Galisteo M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity. 2008; 16:2081-7. 24. Stewart LK, Wang Z, Ribnicky D, Soileau JL, Cefalu WT, Gettys TW. Failure of dietary quercetin to alter the temporal progression of insulin resistance among tissues of C57BL/6J mice during the development of diet-induced obesity. Diabetologia. 2009; 52:514-23. 25. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, Hakulinen T, Aromaa A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002; 76:560-8. 26. Song Y, Manson JE, Buring JE, Sesso HD, Liu S. Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. J. Am. Coll. Nutr. 2005; 24:376-84. 27. Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP. The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr. 2008; 3:115-26. 28. Heo HJ, Lee CY. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J. Agric. Food Chem. 2004; 52:7514-7. 29. Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr. 2007; 137:2405-11. 30. Kaur G, Rao LV, Agrawal A, Pendurthi UR. Effect of wine phenolics on cytokine-induced C-reactive protein expression. J. Thromb. Haemost. 2007; 5:1309-17. 31. Angeloni C, Spencer JP, Leoncini E, Biagi PL, Hrelia S. Role of quercetin and its in vivo metabolites in protecting H9c2 cells against oxidative stress. Biochimie. 2007; 89:73-82. 32. Cogolludo A, Frazziano G, Briones AM, Cobeño L, Moreno L, Lodi F, Salaices M, Tamargo J, Perez-Vizcaino F. The dietary flavonoid quercetin activates BKCa currents in coronary arteries via production of H2O2. Role in vasodilatation. Cardiovasc. Res. 2007; 73:424-31. 33. Snijman PW, Swanevelder S, Joubert E, Green IR, Gelderblom WC. The antimutagenic activity of the major flavonoids of rooibos (Aspalathus linearis): some dose-response effects on mutagen activation-flavonoid interactions. Mutat. Res. 2007; 631:111-23. 34. Katula KS, McCain JA, Radewicz AT. Relative ability of dietary compounds to modulate nuclear factor-kappaB activity as assessed in a cell-based reporter system. J. Med. Food. 2005; 8:269-74. 35. O'Leary KA, de Pascual-Tereasa S, Needs PW, Bao YP, O'Brien NM, Williamson G. Effect of flavonoids and vitamin E on cyclooxygenase-2 (COX-2) transcription. Mutation Res. 2004; 551:245-54. 36. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, Hakulinen T, Aromaa A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002; 76:560-8. 37. Hardie, D.G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 2007; 8: 774–785. 38. Wong, K.A. and Lodish, H.F. A revised model for AMP-activated protein kinase structure: the alpha-subunit binds to both the beta- and gamma-subunits although there is no direct binding between the beta- and gamma-subunits. J. Biol. Chem. 2006; 281: 36434–36442. 39. Carling, D. AMP-activated protein kinase: balancing the scales. Biochimie. 2005; 87: 87–91. 40. Misra, P. AMP activated protein kinase: a next generation target for total metabolic control. Expert Opin. Ther. Targets 2008; 12: 91–100. 41. Hardie, D.G. The AMP-activated protein kinase pathway—new players upstream and downstream. J. Cell Sci. 2004; 117: 5479–5487. 42. Young LH, Li J, Baron SJ, Russell RR. AMP-activated protein kinase: a key stress signaling pathway in the heart. Trends Cardiovasc. Med. 2005; 15: 110–118. 43. Hue L, Beauloye C, Bertrand L, Horman S, Krause U, Marsin AS, Meisse D, Vertommen D, Rider MH. New targets of AMP-activated protein kinase. Biochem. Soc. Trans. 2003; 31: 213–215. 44. Hardie, D.G.. New roles for the LKB1! AMPK pathway. Curr. Opin. Cell Biol. 2005; 17, 167–173. 45. Rattan R, Giri S, Singh AK, Singh I. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J. Biol. Chem. 2005; 280: 39582–39593. 46. Xiang X, Saha AK, Wen R, Ruderman NB, Luo Z. AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochem. Biophys. Res. Commun. 2004; 321: 161–167. 47. Guan TJ, Qin FJ, Du JH, Geng L, Zhang YY, Li M. AICAR inhibits proliferation and induced S-phase arrest, and promotes apoptosis in CaSki cells. Acta. Pharmacol. Sin. 2007; 28: 1984–1990. 48. Cartee, G.D. and Wojtaszewski, J.F. Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl. Physiol. Nutr. Metab. 2007; 32: 557–566. 49. Hawley, J.A. and Lessard, S.J. Exercise training-induced improvements in insulin action. Acta. Physiol. 2008; 192: 127–135. 50. Tomás E, Lin YS, Dagher Z, Saha A, Luo Z, Ido Y, Ruderman NB. Hyperglycemia and insulin resistance: possible mechanisms. Ann. N. Y. Acad. Sci. 2002; 967: 43–51. 51. Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 2005; 17:596–603. 52. Dray C, Knauf C, Daviaud D, Waget A, Boucher J, Buléon M, Cani PD, Attané C, Guigné C, Carpéné C, Burcelin R, Castan-Laurell I, Valet P. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab. 2008; 8: 437–445. 53. Saha, A.K. and Ruderman, N.B. Malonyl-CoA and AMP-activated protein kinase: an expanding partnership. Mol. Cell Biochem.2003; 253: 65–70. 54. Hardie, D.G. and Pan, D.A. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem. Soc. Trans. 2002; 30: 1064–1070. 55. Kim SJ, Jung JY, Kim HW, Park T. Anti-obesity effects of Juniperus chinensis extract are associated with increased AMP-activated protein kinase expression and phosphorylation in the visceral adipose tissue of rats. Biol. Pharm. Bull. 2008; 31: 1415–1421. 56. Ching YP, Davies SP, Hardie DG. Analysis of the specificity of the AMP-activated protein kinase by site-directed mutagenesis of bacterially expressed 3-hydroxy 3-methylglutaryl-CoA reductase, using a single primer variant of the unique-siteelimination method. Eur. J. Biochem. 1996; 237:800–808. 57. Pallottini V, Montanari L, Cavallini G, Bergamini E, Gori Z, Trentalance A. Mechanisms underlying the impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in aged rat liver. Mech. Ageing Dev. 2004; 125: 633–639. 58. Motoshima H, Goldstein BJ, Igata M, Araki E. AMPK and cell proliferation—AMPK as a therapeutic target for atherosclerosis and cancer. J. Physiol. 2006; 574: 63–71. 59. Dolinsky, V.W. and Dyck, J.R. Role of AMP-activated protein kinase in healthy and diseased hearts. Am. J. Physiol. Heart Circ. Physiol. 2006; 291: H2557–H2569. 60. Davies JK, Wells DJ, Liu K, Whitrow HR, Daniel TD, Grignani R, Lygate CA, Schneider JE, Noël G, Watkins H, Carling D. Characterization of the role of gamma2 R531G mutation in AMP-activated protein kinase in cardiac hypertrophy and Wolff-Parkinson- White syndrome. Am. J. Physiol. Heart Circ. Physiol. 2006; 290: H1942–H1951. 61. Cheng SW, Fryer LG, Carling D, Shepherd PR. Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J. Biol. Chem. 2004; 279: 5719–5722. 62. Hwang JT, Ha J, Park IJ, Lee SK, Baik HW, Kim YM, Park OJ. Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett. 2007; 247: 115–121. 63. Collins QF, Liu HY, Pi J, Liu Z, Quon MJ, Cao W. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5’-AMP-activated protein kinase. J. Biol. Chem. 2007; 282: 30143–30149. 64. Jung KH, Choi HS, Kim DH, Han MY, Chang UJ, Yim SV, Song BC, Kim CH, Kang SA. Epigallocatechin gallate stimulates glucose uptake through the phosphatidylinositol 3-kinase-mediated pathway in L6 rat skeletal muscle cells. J. Med. Food. 2008; 11: 429–434. 65. Fan E, Jiang S, Zhang L, Bai Y. Molecular mechanism of apoptosis induction by resveratrol, a natural cancer chemopreventive agent. Int. J. Vitam. Nutr. Res. 2008; 78: 3–8. 66. Jiang, W.J. Sirtuins: novel targets for metabolic disease in drug development. Biochem. Biophys. Res. Commun. 2008; 373: 341–344. 67. Tian, W.X. Inhibition of fatty acid synthase by polyphenols. Curr. Med. Chem. 2006; 13: 967–977. 68. Breen DM, Sanli T, Giacca A, Tsiani E. Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochem. Biophys. Res. Commun. 2008; 374: 117–122. 69. Park CE, Kim MJ, Lee JH, Min BI, Bae H, Choe W, Kim SS, Ha J. Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp. Mol. Med. 2007; 39: 222–229. 70. Penumathsa SV, Thirunavukkarasu M, Zhan L, Maulik G, Menon VP, Bagchi D, Maulik N. Resveratrol enhances GLUT-4 translocation to the caveolar lipid raft fractions through AMPK/Akt/eNOS signalling pathway in diabetic myocardium. J Cell Mol Med. 2008; 12: 2350-61. 71. Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, Wierzbicki M, Verbeuren TJ, Cohen RA. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes. 2006; 55: 2180–2191. 72. Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, Lambert PD, Mataki C, Elliott PJ, Auwerx J. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008; 8: 347–358 73. Palasciano G, Moschetta A, Palmieri VO, Grattagliano I, Iacobellis G, Portincasa P. Non-alcoholic fatty liver disease in the metabolic syndrome. Curr. Pharm. Des. 2007; 13: 2193–2198. 74. Gerhauser, C. Cancer chemopreventive potential of apples, apple juice, and apple components. Planta Med. 2008; 74: 1608–1624. 75. Ahn J, Lee H, Kim S, Park J, Ha T. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem. Biophys. Res. Commun. 2008; 373: 545–549. 76. Fang XK, Gao J, Zhu DN. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci. 2008; 82: 11–12. 77. Suchankova G, Nelson LE, Gerhart-Hines Z, Kelly M, Gauthier MS, Saha AK, Ido Y, Puigserver P, Ruderman NB. Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells. Biochem. Biophys. Res. Commun. 2009; 378: 836–841. 78. Lee TK, Johnke RM, Allison RR, O'Brien KF, Dobbs LJ Jr. Radioprotective potential of ginseng. Mutagenesis. 2005; 20: 237–243. 79. Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, Kim HS, Ha J, Kim MS, Kwon DY. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem. Biophys. Res. Commun. 2007; 364: 1002–1008. 80. Xie JT, Mehendale SR, Li X, Quigg R, Wang X, Wang CZ, Wu JA, Aung HH, A Rue P, Bell GI, Yuan CS. Anti-diabetic effect of ginsenoside Re in ob/ob mice. Biochim. Biophys. Acta. 2005; 1740: 319–325. 81. Park EK, Shin YW, Lee HU, Kim SS, Lee YC, Lee BY, Kim DH. Inhibitory effect of ginsenoside Rb1 and compound K onNO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol. Pharm. Bull. 2005; 28: 652–656. 82. Park MW, Ha J, Chung SH.20(S)-ginsenoside Rg3 enhances glucose-stimulated insulin secretion and activates AMPK. Biol. Pharm. Bull. 2008; 31: 748–751. 83. Ferguson, L.R. and Philpott, M. Cancer prevention by dietary bioactive components that target the immune response. Curr. Cancer Drug Targets. 2007; 7: 459–464. 84. Menon, V.P. and Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol. 2007; 595: 105–125. 85. Lee YK, Lee WS, Hwang JT, Kwon DY, Surh YJ, Park OJ. Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells. J. Agric. Food Chem. 2009; 57: 305–310. 86. Lee, E.S. CAPE (caffeic acid phenethyl ester) stimulates glucose uptake through AMPK (AMP-activated protein kinase) activation in skeletal muscle cells. Biochem. Biophys. Res. Commun. 2007; 361: 854–858. 87. Arayne MS, Sultana N, Bahadur SS. The berberis story: Berberis vulgaris in therapeutics. Pak. J. Pharm. Sci. 2007; 20: 83–92. 88. Yin J, Zhang H, Ye J. Traditional chinese medicine in treatment of metabolic syndrome. Endocr. Metab. Immune. Disord. Drug Targets. 2008; 8: 99–111. 89. Serafim TL, Oliveira PJ, Sardao VA, Perkins E, Parke D, Holy J. Different concentrations of berberine result in distinct cellular localization patterns and cell cycle effects in a melanoma cell line. Cancer Chemother. Pharmacol. 2008; 61: 1007–1018. 90. Park KD, Lee JH, Kim SH, Kang TH, Moon JS, Kim SU. Synthesis of 13-(substituted benzyl) berberine and berberrubine derivatives as antifungal agents. Bioorg.Med. Chem. Lett. 2006; 16: 3913–3916. 91. Kim SH, Shin EJ, Kim ED, Bayaraa T, Frost SC, Hyun CK. Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes. Biol. Pharm. Bull. 2007; 30: 2120–2125. 92. Cheng Z, Pang T, Gu M, Gao AH, Xie CM, Li JY, Nan FJ, Li J. Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochim. Biophys. Acta. 2006; 1760: 1682–1689. 93. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes.2006; 55:2256–226. 94. Brusq JM, Ancellin N, Grondin P, Guillard R, Martin S, Saintillan Y, Issandou M. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. J. Lipid Res. 2006; 47: 1281–1288. 95. Lin CL, Huang HC, Lin JK.Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. J. Lipid Res. 2007; 48: 2334–2343. 96. Hwang JT, Kwon DY, Yoon SH. AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols. N Biotechnol. 2009; 26:17-22. 97. Nakajima K, Yamauchi K, Shigematsu S, Ikeo S, Komatsu M, Aizawa T, Hashizume K. Selective attenuation of metabolic branch of insulin receptor down-signaling by high glucose in a hepatoma cell line, HepG2 cells. J Biol Chem. 2000 Jul 7; 275: 20880-6. 98. Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes. 2002; 51:3391-9. 99. Fogarty S, Hardie DG. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta. 2010; 1804:581-91. 100. Joseph J. Senn, Peter J. Klover, Irena A. Nowak, and Robert A. Mooney. Interleukin-6 Induces Cellular Insulin Resistance in Hepatocytes. Diabetes. 2002; 51:3391-9. 101. Geetha Vani Rayasam, Vamshi Krishna Tulasi, Reena Sodhi, Joseph Alex Davis and Abhijit Ray. Glycogen synthase kinase 3: more than a namesake. British Journal of Pharmacology. 2009; 156: 885–898. 102. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001; 108:1167-74. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46279 | - |
| dc.description.abstract | 背景:糖尿病是一種常見的代謝疾病,影響全世界人口的健康。隨著罹患糖尿病的人數日益增加,尋找新的治療方式是必要的。AMPK是能量代謝的感應者,過去研究指出其在治療肥胖、第二型糖尿病及代謝症候群的發展上佔有重大角色。本篇實驗目的為尋找AMPK的活化劑,並比較quercetin及其結構相關化合物對AMPK活化的影響。
材料及方法:本實驗使用C2C12小鼠骨骼肌細胞株作為細胞模式,看quercetin及其結構相關的6種化合物對AMPK活性的影響,並進一步測試quercetin及RS-25兩藥物對葡萄糖吸收、肝醣合成,及對胰島素阻抗的改善作用。 結果:在測試7個化合物後,發現除了642C不會增加C2C12 myotubes的AMPK磷酸化外,642D、RS-25、RS-26、quercetin、RS-47、RS-59在不同濃度或時間下均可增加AMPK的磷酸化。雖然0.3 uM的quercetin有相當於10 uM RS-25的AMPK活化作用,但發現0.3 uM quercetin的葡萄糖吸收及肝醣合成作用較10uM RS-25強,推測可能與其有較強的Akt磷酸化有關。此外,發現quercetin及RS-25皆可使ATP含量降低,而quercetin可以改善高血糖或IL-6引起的胰島素阻抗。 結論:造成此兩種化合物作用上差異的機制,可能在於此兩種藥物活化Akt以及活化AMPK能力的差異。由於在刺激葡萄糖吸收的機制:一條經由胰島素依賴的phosphoinositide 3 kinase/Akt訊息路徑而另一條經由代謝的stress而活化的AMPK依賴的訊息傳遞,除了化合物對此兩種訊息路徑作用不同外,兩者作用之差異仍有待進一步的釐清。 | zh_TW |
| dc.description.abstract | Background: Diabetes mellitus is one of the most common metabolic disorders that disturbs lots of people’s life and heath all over the world. With the increase number of diabetic patients, the search for new agent in treatment of diabetes is needed. Recently, AMPK is known as an energy sensor and important target, its activation is reported to play an important role in regulation of obesity, type II diabetes, and metabolic syndrome. The present study was aimed to examine and compare the AMPK activating activities of quercetin and its chemical derivatives.
Methods: C2C12 myotube was used as a cell model. The increase of AMPK phosphorylation after treatment with quercetin and its analogs was used as an index of AMPK activation. Further study of the effect of quercetin and RS-25 on glucose uptake, glycogen synthesis, and improvement of insulin resistance was examined and compared. Results: Among the seven compound examined, except 642C, all six other compounds(642D, RS-25, RS-26, quercetin, RS-47, RS-59) were found to activate AMPK phosphoryltaion at different time and concentration. Although 0.3 uM quercetin has comparable AMPK activating activity as 10 uM RS-25, 0.3 uM quercetin was found to have stronger activity than 10 uM RS-25 in increasing glucose uptake and glycogen content of C2C12 myotubes. The stronger activity of quercetin was correlated with the stronger stimulation of Akt phosphorylation in C2C12 myotubes. Besides, both quercetin and RS-25 were found to induce ATP depletion, and quercetin was found to improve high glucose or IL-6-induced insulin resistance. Conclusion: Most quercetin derivatives were found to have AMPK activating activities. Quercetin at 0.3 uM was found to exert stronger activity in stimulation of glucose uptake than 10 uM RS-25. The stronger activity of quercetin is related to its stronger stimulation of Akt phosphorylation. However, mechanism of quercetin to induce depletion of ATP is remained to be clarified. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:01:24Z (GMT). No. of bitstreams: 1 ntu-99-R97443005-1.pdf: 3085327 bytes, checksum: 9bc224703dc40d24c16c0739402ca334 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………… i
誌謝………………………………………………………… ii 縮寫表……………………………………………………… iii 中文摘要…………………………………………………… iv 英文摘要…………………………………………………… v 第一章 緒論……………………………………………… 1 第二章 實驗材料及方法………………………………… 13 第三章 實驗結果………………………………………… 18 第四章 討論……………………………………………… 21 第五章 結論……………………………………………… 25 第六章 未來及展望……………………………………… 26 參考文獻…………………………………………………… 27 圖表………………………………………………………… 37 | |
| dc.language.iso | zh-TW | |
| dc.subject | Quercetin | zh_TW |
| dc.subject | 胰島素阻抗 | zh_TW |
| dc.subject | compound C | zh_TW |
| dc.subject | ATP含量 | zh_TW |
| dc.subject | C2C12 | zh_TW |
| dc.subject | 肝醣合成 | zh_TW |
| dc.subject | 葡萄糖吸收 | zh_TW |
| dc.subject | AMPK | zh_TW |
| dc.subject | Akt | zh_TW |
| dc.subject | AMPK | en |
| dc.subject | Quercetin | en |
| dc.subject | insulin resistance | en |
| dc.subject | compound C | en |
| dc.subject | ATP level | en |
| dc.subject | C2C12 | en |
| dc.subject | glycogen synthesis | en |
| dc.subject | glucose uptake | en |
| dc.subject | Akt | en |
| dc.title | Quercetin及其結構類似物在骨骼肌細胞中葡萄糖吸收及利用之影響 | zh_TW |
| dc.title | Effects of Quercetin and its analog on glucose uptake and utilization in C2C12 cell line | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林正一(Cheng-I Lin),顏茂雄(Mao-Hsiung Yen),蔡佳醍(Chia-Ti Tsai) | |
| dc.subject.keyword | Quercetin,AMPK,Akt,葡萄糖吸收,肝醣合成,C2C12,ATP含量,compound C,胰島素阻抗, | zh_TW |
| dc.subject.keyword | Quercetin,AMPK,Akt,glucose uptake,glycogen synthesis,C2C12,ATP level,compound C,insulin resistance, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-28 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| Appears in Collections: | 藥理學科所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-99-1.pdf Restricted Access | 3.01 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
