Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46239
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王凡(Farn Wang)
dc.contributor.authorTzu-Hsiang Linen
dc.contributor.author林子翔zh_TW
dc.date.accessioned2021-06-15T04:59:27Z-
dc.date.available2010-08-02
dc.date.copyright2010-08-02
dc.date.issued2010
dc.date.submitted2010-07-27
dc.identifier.citation[1] Linux device drivers. http://www.jollen.org/blog/2006/05/linux 1.html.
[2] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence
algorithms. In SPIRE, pages 39–48, 2000.
[3] P. Berkhin. Survey of clustering data mining techniques. Technical report, Accrue
Software, San Jose, CA, 2002.
[4] K. Burr andW. Young. Combinatorial test techniques: Table-based automation, test
generation and code coverage. In Proceedings of the Intl. Conf. on Software Testing
Analysis and Review, pages 503–513. West, 1998.
[5] G. J. Carrette. Crashme: Random input testing, 1996.
http://people.delphiforums.com/gjc/crashme.html.
[6] K.-H. Cheng. Testing system software with shell commands and user-assistance.
2009.
[7] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. The combinatorial design
approach to automatic test generation. IEEE Software, 13(5):83–88, 1996.
[8] S. Devadas, A. Ghosh, and K. Keutzer. An observability-based code coverage metric
for functional simulation. In ICCAD, pages 418–425, 1996.
[9] D. Maier. The complexity of some problems on subsequences and supersequences.
J. ACM, 25(2):322–336, April 1978.
[10] Methods for Testing and Specification (MTS), The Testing and Test Control Notation version 3 - Parts 1-8. ETSI ES 201 873-1 v3.2.1, Feb. 2007.
[11] B. P. Miller, G. Cooksey, and F. Moore. An empirical study of the robustness of
macos applications using random testing. Operating Systems Review, 41(1):78–86,
2007.
[12] G. J. Myers. The Art of Software Testing. John Wiley & Sons, Inc., 1979.
[13] M. M. Tikir and J. K. Hollingsworth. Efficient instrumentation for code coverage
testing. In ISSTA, pages 86–96, 2002.
[14] F. Wang. Redlib. http://sourceforge.net/projects/redlib/.
[15] F. Wang. Redlib for the formal verification of embedded systems. In ISOLA ’06:
Proceedings of the Second International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, pages 341–346, Washington, DC,
USA, 2006. IEEE Computer Society.
[16] F. Wang and Y.-C. Lee. Automatic black-box regression testing for checking bug
fixes. 2009.
[17] F. Wang, Geng-Dian Huang. Test Plan Generation for Concurrent Real-Time Systems based on Zone Coverage Analysis. TESTCOM/FATES 2008, June 2008, Tokyo. LNCS 5047, Springer-Verlag.
[18] F. Wang, G.-D. Huang, F. Yu. Symbolic Simulation of Real-Time Concurrent Systems. RTCSA2003, LNCS 2968, Springer-Verlag.
[19] F. Wang, G.-D. Huang, Fang Yu. Numerical Coverage Estimation for Dense-Time Systems. in proceedings of FORTE’2003, LNCS 2767, Springer-Verlag.
[20] R. Williamson. Stress-testing the linux kernel - a design process for standard-
ized testing of linux, 2004. http://www.ibm.com/developerworks/linux/library/l-
stress/index.html.
[21] R.M. Haralick and L.G. Shapiro. Computer and Robot Vision, pages 29–31Addison-Wesley, 1993.
[22] T. Back and D.B Fogel and Z Michalewicz. Evolutionary Computation 1: Basic Algorithms and Operators, pages181-182 Institute of Physics Publishing, Bristol, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46239-
dc.description.abstract利用RED LIB對系統程式進行自動化測試
作業系統的核心是一個很複雜的系統,其中包含了許多軟體的互動和運作上面的協調,若要對核心中的一個檔案或元件做測試,會因為使用者無法直接對待測物件操作,必須經由使用者層的應用程式來替代,使得測試過程更加困難。
將待測物及作業系統轉換成我們定義的模型語言,藉由待測物模型與作業系統模型間的互動取代軟硬體及作業系統的互動,以達到自動化測試,提高測試的效率,並降低測試成本。
當我們有待測物的模型與測試案例(test case),要測試程式覆蓋率(coverage ratio),一般會將測試案例一一輸入後再統計覆蓋率多高,但當測試案例的數量一多就會花費相當多的時間,又如果測試案例為隨機亂數產生的,其中可能有許多相似的案例,所以我們提出將測試案分類後再將從每類中抽出案例樣本來進行覆蓋率測試,以減少花費在相似性高的案例上的時間。
我們利用基因演算法去找出最佳分類法,我們認為相似的案例執行後,會走過類似的模型或是函數,因此我們利用字串比對作為分類的依據,再利用基因演算法找出最佳分類,經過訓練後我們只抽出每類中的某些案例來執行,不但降低許多執行時間,也可以達到將所有案例執行後的覆蓋率。針對同一個待測物,即使換了一組全新的測試案例我們也不需再次訓練,直接使用先前訓練後的結果也可達到效果。
zh_TW
dc.description.abstractWe propose kernel code coverage analysis on model testing instead of testing on user application software, system software, and perform the testing on generating the commands in command line interfaces. In our approach, we can gain much higher coverage ratio than the used testing approach. We also can save more testing time or testing cost and save important information or error message when system crash occurs.
We also propose an approach use a genetic algorithm to find a appropriate way to clustering those test cases, so that testers don’t need to run every test case; they just pick few test cases from every cluster to run, and they can evaluate the whole test case bases will gain how much coverage ratio. For the same target, there is no need to train again, we can just follow the rule we have found to clustering. Our technique provides a more efficient and more accurate way to analyze coverage ratio.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:59:27Z (GMT). No. of bitstreams: 1
ntu-99-R97943152-1.pdf: 2538958 bytes, checksum: 178a6b1a7a598fd04d93c3d2878aab9a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Purpose 1
1.3 Contribution 2
1.4 Thesis organization 3
Chapter 2 Related Work 4
Chapter 3 Framework of Model Based Kernel Code Testing 5
Chapter 4 Background 8
4.1 REDLIB & Pathg 8
4.2 Linux kernel and Linux device drivers 8
4.3 The Longest Common Subsequence 9
4.4 Genetic algorithms 10
4.5 Total correlation index 11
4.6 Tournament selection 13
Chapter 5 Model building 14
5.1 Framework of Kernel Software Testing 14
5.2 Communicating timed automata 15
5.3 How to build a model 17
5.3.1 Function call 17
5.3.2 Branches 20
5.3.3 Loop 23
5.4 Advantage of Model Based kernel testing 28
Chapter 6 Genetic Algorithm on Test Case Selection 30
6.1 Test case 30
6.2 Test case generation 31
6.3 Correlation indices based on communication 32
6.4 Test Case Cluster 32
6.4.1 Notation 34
6.4.2 Connected components analysis 37
6.4.3 Refinement 38
6.5 Training of tester for the fittest weightings 40
Chapter 7 Experiment 44
7.1 Coverage ratio 44
7.2 Weighting Training 45
7.3 Comparison 51
Chapter 8 Conclusion 55
Bibliography…………. 56
LIST OF FIGURES
Fig. 1.1 the way testers used to estimating coverage ratio 2
Fig. 3.1 the framework of this work 5
Fig. 3.2 weighting training procedure 6
Fig. 3.3 test case generator 7
Fig. 4.1 the illustration of user mode, kernel mode and hardwares 9
Fig. 5.1 Communications in software testing 14
Fig. 5.2 specification of a bus-contending protocol 16
Fig. 5.3 function implement with synchronizer 18
Fig. 5.4 the model graph of synchronizer 18
Fig. 5.5 function implement with procedural call 19
Fig. 5.6 if-else structure in C language and model 20
Fig. 5.7 the model graph of if structure 21
Fig. 5.9 the model graph of switch structure 22
Fig. 5.8 switch structure in C language and model 22
Fig. 5.11 the model graph of while structure 23
Fig. 5.10 while structure in C language and model 23
Fig. 5.13 the model graph of while structure 24
Fig. 5.12 do-while structure in C language and model 24
Fig. 5.15 the model graph of for loop structure 25
Fig. 5.14 for loop structure in C language and model 25
Fig. 5.16 break structure in C language and model 26
Fig. 5.17 the model graph of for break structure 27
Fig. 5.18 continue structure in C language and model 27
Fig. 5.19 the model graph of for continue structure 28
Fig. 6.1 the distance between two points 36
Fig. 6.2 connected components analysis 37
Fig. 6.3 data after connected components analysis 38
Fig. 6.4 data after refinement clustering 39
Fig. 6.5 training flow 40
Fig. 7.1 md.c - weighting sets in generation 1 45
Fig. 7.2 md.c - weighting sets in generation 10 46
Fig. 7.3 md.c - weighting sets in generation 20 46
Fig. 7.4 md.c - weighting sets in generation 30 46
Fig. 7.5 md.c - weighting sets in generation 40 47
Fig. 7.6 md.c - weighting sets in generation 50 47
Fig. 7.7 md.c - variance of each weighting 48
Fig. 7.8 file.c - weighting sets in generation 1 48
Fig. 7.9 file.c - weighting sets in generation 10 49
Fig. 7.10 file.c - weighting sets in generation 20 49
Fig. 7.11 file.c - weighting sets in generation 30 49
Fig. 7.12 file.c - weighting sets in generation 40 50
Fig. 7.13 file.c - weighting sets in generation 50 50
Fig. 7.14 file.c - variance of each weighting 51
Fig. 7.15 the result of md.c-set 1 52
Fig. 7.16 the result of md.c-set 2 53
Fig. 7.17 the result of md.c-set 4 53
Fig. 7.18 the result of md.c-set 5 54
LIST OF TABLES
Table 4.1 tournament selection 13
Table 6.1 clustering procedure 33
Table 6.2 the TCI value of received port 34
Table 6.3 the TCI value of sent port 35
Table 6.4 refinement procedure 40
Table 6.5 training procedure 42
Table 7.1 md.c - variance of each weighting 48
Table 7.2 file.c - variance of each weighting 50
Table 7.3 md.c – test case data base 52
Table 7.4 the weightings is training by md.c training set 1 52
dc.language.isoen
dc.subject模型測zh_TW
dc.subject測試案例zh_TW
dc.subject覆蓋率zh_TW
dc.subject基因演算法zh_TW
dc.subjecttest caseen
dc.subjectgenetic algorithmen
dc.subjectmodel testingen
dc.subjectcoverage ratioen
dc.title利用基因演算法挑選測試案例於系統核心模型上覆蓋率分析zh_TW
dc.titleApplication of Genetic Algorithm on Test Case Selection against State Coverage of Kernel Codeen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊壯,王勝德,廖純中,黃鐘揚
dc.subject.keyword基因演算法,覆蓋率,模型測,測試案例,zh_TW
dc.subject.keywordgenetic algorithm,coverage ratio,model testing,test case,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2010-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved