請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46237完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何國川(Kuo-Chuan Ho) | |
| dc.contributor.author | Chia-Hui Wu | en |
| dc.contributor.author | 吳佳蕙 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:59:22Z | - |
| dc.date.available | 2011-07-30 | |
| dc.date.copyright | 2010-07-30 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-29 | |
| dc.identifier.citation | [1] J. R. Platt, “Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field,” J. Chem. Phys., 34 (1961) 862-864.
[2] S. K. Deb, “Novel Electrophotographic System,” Appl. Opt. Suppl., 3 (1969) 193. [3] S. K. Deb, “Electro-Optical Device Having Variable Optical Density,” U. S. Pat., 3,521,941 (1970). [4] F. T. Bauer and J. H. Bechtel, “Automatic Rearview Mirror for Automotive Vehicles,” U. S. Pat., 4,443,057 (1984). [5] H. J. Byker, “Single-Compartment, Self-Erasing, Solution-Phase Electrochromic Devices, Solutions for Use Therein, and Uses Thereof,” U. S. Pat., 4,902,108 (1990). [6] J. H. Brechtel and H. J. Byker, “Automatic Rearview Mirror System for Automotive Vehicles,” U. S. Pat., 4,917,477 (1990). [7] E. S. Lee and D. L. DiBartolomeo, “Application Issues for Large-area Electrochromic Windows in Commercial Buildings,” Sol. Energy Mater. Sol. Cells, 71 (2002) 465-491. [8] A. Azens, E. Avendano, J. Backholm, L. Berggren, G. Gustavsson, R. Karmhag, G. A. Niklasson, A. Roos and C. G. Granqvist, “Flexible Foils with Electrochromic Coatings: Science, Technology and Applications,” Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 119 (2005) 214-223. [9] M. Gratzel, “Ultrafast Colour Displays,” Nature, 409 (2001) 575-576. [10] U. Bach, D. Corr, D. Lupo, F. Pichot and M. Ryan, “Nanomaterials-based Electrochromics for Paper-Quality Displays,” Adv. Mater., 14 (2002) 845-848. [11] D. Corr, U. Bach, D. Fay, M. Kinsella, C. McAtamney, F. O’Reilly, S. N. Rao and N. Stobie, “Coloured Electrochromic “Paper-Quality” Displays based on Modified Mesoporous Electrodes,” Solid State Ion., 165 (2003) 315-321. [12] R. D. Rauh, “Electrochromic Windows: an Overview,” Electrochim. Acta, 44 (1999) 3165-3176. [13] M. Mastragostine, C. Arbizzani, P. Ferloni and A. Marinangeli, “Polymer-based Electrochromic Devices,” Solid State Ion, 53 (1992) 471-478. [14] 林巧芬, “以紫精搭配普魯士藍電致色變元件之研究,” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2003). [15] B. W. Faughnan, R. S. Crandall and P. M. Heyman, “Electrochromism in WO3 Amorphous Films” RCA Rev., 36 (1975) 177-197. [16] S. F. Cogan, N. M. Nguyen, S. J. Perrotti and R. D. Rauh, “Optical Properties of Electrochromic Vanadium Pentoxide,” J. Appl. Phys., 66 (1989) 1333-1337. [17] M. Kikao and S. Yamada, “Proceedinds of the International Seminar on Solid State Ionic Devices,” World Publishing, Singapore (1988). [18] C. K. Dyer and J. S. Leach, “Reversible Optical Changes within Anode Oxide Films on Titanium and Niobium,” J. Electrochem. Soc., 125 (1978) 23-29. [19] 黃玉仙, “含普魯士藍與六氰鐵化銦電致色變元件之性能與最適化研究,” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2002). [20] J. Joseph, H. Gomathi and G. P. Rao, “Electrodes Modified with Cobalt Hexacyanoferrate,” J. Electroanal. Chem., 304 (1991) 263-269. [21] 柯惠琪, “含聚苯胺之電致色變元件性質研究,” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2000). [22] R. D. Rauh, F. Wang, J. R. Reynolds and D. L. Meeker, “High Coloration Efficiency Electrochromics and Their Application to Multi-Color Devices,” Electrochim. Acta, 46 (2001) 2023-2029. [23] C. L. Gaupp, D. M. Welsh, R. D. Rauh and J. R. Reynolds, “Composite Coloration Efficiency Measurements of Electrochromic Polymers based on 3,4-Alkylenedioxythiophenes,” Chem. Mat., 14 (2002) 3963-3970. [24] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p-n Junction Photocell for Convertin Solar Radiation into Electrical Power,” J. Appl. Phys., 25 (1954) 676-677. [25] B. O’Regan and M. Gratzel, “A Low Cost, High-Efficiency Solar Cell based on Dye-Sensitized Colloidal TiO2 Films,” Nature, 353 (1991) 737-740. [26] M. Gratzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells,” Inorg. Chem., 44 (2005) 6841-6851. [27] M. Gratzel, “Photoelectrochemical Cells,” Nature, 414 (2001) 338-414. [28] T. Markvart, “Solar Electricity,” 2nd ed., John Wiley & Sons, Chichester (2000). [29] R. H. Bube, “Photovoltaic Material. Imperial College Press,” London (1998). [30] M. A. Grenn, “Photovoltaic Principles”, Physica E, 14 (2002) 11-17. [31] S. Nakamura, KRI Report No. 8 of Phase XVI. KRI, Inc., Japan (2005). [32] T. Inoue, A. Fujishima, and K. Honda, “Photoelectrochromic Characteristics of Photoelectrochemical Imaging System with a Semiconductor/ Solution (Metallic Ion) Junction,” J. Electrochem. Soc., 127 (1980) 1582-1588. [33] D. W. DeBerry and A. Viehbeck, “Photoelectrochromic Behavior of Prussian Blue-Modified TiO2 Electrodes,” J. Electrochem. Soc., 130 (1983) 249-251. [34] O. Ingonas and I. Lundstrom, “A Photoelectrochromic Memory and Display Device based on Conducting Polymers,” J. Electrochem. Soc., 131 (1984) 1129-1132. [35] J.-Y. Liao and K. C. Ho, “A Photoelectrochromic Device Using a PEDOT Thin Film,” J. New Mat. Electrochem. Systems, 8 (2005) 37-47. [36] C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, and B. A. Gregg, “Photoelectrochromic Windows and Displays,” Nature, 383 (1996) 608-610. [37] I. Bedja, S. Hotchandani, and P. V. Kamat, “Photoelectrochemistry of Quantized WO3 Colloids-Electron Storage, Electrochromic, and Photoelectrochromic Effects,” J. Phys. Chem., 97 (1993) 11064-11070. [38] P.M.S. Monk, J. A. Duffy, and M. D. Ingram, “Electrochromic Display Devices of Tungstic Oxide Containing Vanadium-Oxide or Cadmium-Sulfide as A Light-Sensitive Layer,” Electrochim. Acta, 38 (1993) 2759-2764. [39] S. Hotchandani, I. Bedja, R. W. Fessenden, and P. V. Kamat, “Electrochromic and Photoelectrochromic Behavior of Thin WO3 Films Prepared from Quantum-Size Colloidal Particles” Langmuir, 10 (1994) 17-22. [40] F. Pichot, S. Ferrere, R. J. Pitts, B. A. Gregg, “Flexible Solid-State Photoelectrochromic Windows,” J. Electrochem. Soc., 146 (1999) 4324-4326. [41] S. Kuwabata, K. Mitsui, H. Yoneyama, “Photoelectrochromic Properties of Methylene-Blue in Conducting Polyaniline Matrices,” J. Electrochem. Soc., 139 (1992) 1824-1830. [42] N. R. de Tacconi, J. Carmona, K. Rajeshwar, “Reversibility of Photo- Electrochromism at the TiO2/ Methylene Blue Interface,” J. Electrochem. Soc., 144 (1997) 2486-2490. [43] A. Hauch, A. Georg, S. Baumgartner, U. Opara Kraŝovec and B. Orel, “New Photoelectrochromic Device, ” Electrochim. Acta, 46 (2001) 2131-2136. [44] A. Hauch, A. Georg, S. Baumgartner, U. Opara Kraŝovec and B. Orel, “Comparison of Photoelectrochromic Devices with Different Layer Configurations,” J. Electrochem. Soc., 149 (2002) H159-H163. [45] U. O. Krasovec, A. Georg, A. Georg, V. Wittwer, J. Luther, and M. Topic, “Performance of a Solid-State Photoelectrochromic Device,” Sol. Energy Mater. Sol. Cells, 84 (2004) 369-380. [46] A. Georg, A. Georg, and U. O. Krasovec, “Photoelectrochromic Window with Pt Catalyst,” Thin Solid Films, 502 (2006) 246-251. [47] A. Georg, A. Georg, W. Graf, and V. Wittwer, “Switchable Windows with Tungsten Oxide,” Vaccum, 82 (2008) 730-735. [48] L. J. Ma, Y. X. Li, X. F. Yu, N. F. Zhu, Q. B. Yang, and C. H. Noh, “Electrochemical Preparation of PMeT/TiO2 Nanocomposite Electrochromic Electrodes with Enhanced Long-term Stability,” J. Solid State Electrochem., 12 (2008) 1503-1509. [49] C. Y. Hsu, K. M. Lee, J. H. Huang, K. R. J. Thomas, J. T. Lin, K. C. Ho, “A Novel Photoelectrochromic Device with Dual Application based on Poly(3,4-alkylenedioxythiophene) Thin Film and an Organic Dye,” J. Power Sources, 185 (2008) 1505-1508. [50] H. Letheby, “On the Production of a Blue Substance by the Electrolpsis,” J. Chem. Soc., 15 (1862) 161-163. [51] H. Shirakawa, E. J. Lewis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x,” J. Chem. Soc., Chem, Comm., 10 (1977) 578-580. [52] J. Roncali, “Conjugated Poly(thiophenes): Synthesis, Functionalization and Applications,” Chem. Rev., 92 (1992) 711-738. [53] J. Ohshita, A. Matsuguchi, K. Furumori, R. F. Hong, M. Ishikawa, T. Yamanaka, T. Koike, and J. Shioya, “Polymeric Organosilicon Systems. 11. Synthesis and Some Properties of Poly(disilanylenebutenyne-1,4-diyls) and Poly[(methylphenysilylene)butenyne-1,4-diyl],” Macromolecules, 25 (1992) 2134-2140. [54] C. L. Curtis, J. E. Ritchie, and M. J. Sailor, “Fabrication of Conducting Polymer Interconnects,” Science, 262 (1993) 2014-2016. [55] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science, 290 (2000) 2123-2126. [56] P. M. Beaujuge, S. Ellinger, J. R. Reynolds, “The Donor-acceptor Approach Allows a Black-to-Transmissive Switching Polymeric Electrochrome,” Nat. Mater., 7 (2008) 795-799. [57] C. R. Martins, and M. A. De Paoli, “Antistatic Thermoplastic Blend of Polyaniline and Polystyrene Prepared in a Double-screw Extruder,” Eur. Polym. J., 41 (2005) 2867-2873. [58] A. Kaynak, “Electromagnetic Shielding Effectiveness of Galvanostatically Synthesized Conducting Polypyrrole Films in the 300-2000 MHz Frequency Range,” Mater. Res. Bull., 31 (1996) 845-860. [59] N. Ahmad and A. G. MacDiarmid, “Inhibition of Corrosion of Steels with the Exploitation of Conducting Polymers,” Synth. Met., 78 (1996) 103-110. [60] F. Garnier, R. Hajlaoui, A. Yassar and P. Srivastava, “All-Polymer Field-Effect Transistor Realized by Printing Techniques,” Science, 265 (1994) 1684-1686. [61] S. A. Carter, M. Angelopoulos, S. Karg, P. J. Brock and J. C. Scott, “Polymeric Anodes for Improved Polymer Light-emitting Diode Performance,” Appl. Phys. Lett., 70 (1997) 2067-2069. [62] Y. Kudoh, K. Akami and Y. Matsuya, “Solid Electrolytic Capacitor with Highly Stable Conducting Polymer as a Counter Electrode,” Synth. Met., 102 (1999) 973-974. [63] B. Adhikari and S. Majumdar, “Polymers in Sensor Applications,” Prog. Polym. Sci., 29 (2004) 699-766. [64] S. J. Dong, Z. S. Sun and Z. L. Lu, “Chloride Chemical Sensor based on an Organic Conducting Polypyrrole Polymer,” Analyst, 113 (1988) 1525-1528. [65] G. R. Goward, F. Leroux and L. F. Nazar, “Poly(pyrrole) and Poly(thiophene)/ vanadium Oxide Interleaved Nanocomposites: Positive Electrodes for Lithium Batteries,” Electrochim. Acta, 43 (1998) 1307-1313. [66] S. Joseph, J. C. McClure, R. Chianelli, P. Pich and P. J. Sebastian, “Conducting Polymer-Coated Stainless Steel Bipolar Plates for Proton Exchange Membrane Fuel Cells (PEMFC),” Int. J. Hydrog. Energy, 30 (2005) 1339-1344. [67] S. X. Tan, J. Zhai, M. X. Wan, Q. B. Meng, Y. L. Li, L. Jiang and D. B. Zhu, “Influence of Small Molecules in Conducting Polyaniline on the Photovoltaic Properties of Solid-State Dye-sensitized Solar Cells,” J. Phys. Chem. B, 108 (2004) 18693-18697. [68] C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, “Plastic Solar Cells,” Adv. Funct. Mater., 11 (2001) 15-26. [69] T. H. Lin and K. C. Ho, “A Complementary Electrochromic Device based on Polyaniline and Poly(3,4-ethylenedioxythiophene),” Sol. Energy Mater. Sol. Cells, 90 (2006) 506-520 [70] S. W. Hwang and K. C. Ho, “An All-thiophene Electrochromic Device Fabricated with Poly(3-methylthiophene) and Poly(3,4-ethylenedioxythiophene),” Sol. Energy Mater. Sol. Cells, 90 (2006) 491–505. [71] J. Y. Wang, C. M. Yu, S. C. Hwang, K. C. Ho and L. C. Chen, “Influence of Coloring Voltage on the Optical Performance and Cycling Stability of a Polyaniline-Indium Hexacyanoferrate Electrochromic System,” Sol. Energy Mater. Sol. Cells, 92 (2008) 112-119 [72] H. R. Allcock and F. W. Lampe, “Contemporary Polymer Chemistry,” 2nd Ed., Prentice Hall, Englewood Cliffs, NJ (1995). [73] G. Harsanyi, “Polymer Films in Sensor Applications,” CRC press, Boca Raton, Florida (1995) 206. [74] A. J. Heeger, S. Kivelson, J. R. Schrieffer and W. P. Su, “Solitons in Conducting Polymers,” Rev. Mod. Phys., 60 (1988) 781-850. [75] Michael G. Hill, Kent R. Mann, Larry L. Miller and Jean Francois Penneau, “Oligothiophene Cation Radical Dimers. an Alternative to Bipolarons in Oxidized Polythiophene,” J. Am. Chem. Soc., 114 (1992) 2728-2730. [76] G. G. Wallace, G.M. Spinks, L.A.P. Kane-Maguire and P.R. Teasdale, “Conductive Electroactive Polymers,” 2nd Ed., CRC Press, NY (2003). [77] F. Jonas, G. Heywang, W. Schmidtberg and J. Heinze, “Method of Imparting Antistatic Properties to a Substrate by Coating the Substrate with a Novel Polythiophene,” Eur. Pat., 339,340 (1988). [78] G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s-New, Very Stable Conducting Polymers,” Adv. Mater., 4 (1992) 116-118. [79] D. M. Welsh, A. Kumar, E. W. Meijer and J. R. Reynolds, “Enhanced Contrast Ratios and Rapid Switching in Electrochromics based on Poly(3,4-propylenedioxythiophene) Derivatives,” Adv. Mater., 11 (1999) 1379-1382. [80] C. L. Gaupp, D. M. Welsh and J. R. Reynolds “Poly(PProDOT-Et2): A High-Contrast, High-Coloration Efficicency Electrochromic Polymer,” Macromol. Rapid Commun., 23 (2002) 885-889. [81] 陳威凱, “PANI或PANI/SiO2與PMeT或PProDOT-Et2搭配之互補式電致色變元件:最適化與穩定性,” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2009). [82] J. N. Sherwood, “The Plastically Crystalline State: Orientationally Disordered Crystals,” 1st Ed., Wiley, London (1979). [83] E. I. Cooper and C. Angell, “Ambient Temperature Plastic Crystal Fast Ion Conductors (PLICFICS),” Solid State Ionics, 18-19 (1986) 570-576. [84] P.-J. Alarco, Y. Abu-Lebdeh, A. Abouimrane and M. Armand, “The Plastic-Crystalline Phase of Succinonitrile as a Universal Matrix for Solid-State Ionic Conductors,” Nature Materials, 3 (2004) 476-481. [85] S. Long, D. R. MacFarlane, M. Forsyth, “Fast Ion Conduction in Molecular Plastic Crystals.” Solid State Ionics, 161 (2003) 105-112. [86] H. M. Hawthorne and J. N. Sherwood, “Lattice Defects in Plastic Organic Crystals. Part 3- Plastic deformation in Pure and Impure Camphene,” Trans. Faraday Soc., 66 (1970) 1799-1801. [87] S. Das, S. J. Prathapa, P. V. Menezes, T. N. Guru Row and A. J. Bhattacharyya, “Study of Ion Transport in Lithium Perchlorates-Succinonitrile Plastics Crystalline Electrolyte via Ionic Conductivity and in Situ Cryo-Crystallogaphy,” J. Phys. Chem. B, 113 (2009) 5025-5031. [88] A. Abouimarane, P. S. Whitfield, S. Niketic, I. J. Davidson, “Investigate of Li Salt Doped Succinonitrile as Potential Solid Electrolytes for Lithium Batteries,” J. Power Sources, 174 (2007) 883-888. [89] T. H. Kuo, C. Y. Hsu, K. M. Lee and K. C. Ho, “All-Solid-State Electrochromic Device based on Poly(Butyl Viologen), Prussian Blue, and Succinontrile,” Sol. Energy Mater. Sol. Cells, 93 (2009) 1755-1760. [90] Z. G. Chen, H. Yang, X. H. Li, F. Y. Li, T. Tao and C. H. Huang, “Thermostable Succinonitrile-based Gel Electrolyte for Efficient, Long-Life Dye-Sensitized Solar Cells,” J. Mater. Chem., 17 (2007) 1602-1607. [91] Z. Jiang, B. Carroll and K. M. Abraham, “Studies of Some Poly(Vinylidene Fluoride) Electrolytes,” Electrochim. Acta, 42 (1997) 2667-2677. [92] T. Osaka, S. Komaba, Y. Uchida, M. Kitahara, T. Momma and N. Eda, “Performance of a Lithium Metal Anode in Poly(Vinylidene Fluoride)-Type Gel Electrolyte,” Electrochem. Solid-State Lett., 2 (5) (1999) 215-217. [93] M. G. Kang, K. M. Kim, K. S. Ryu, S. H. Chang, J. S. Park, J. S. Hong and K. J. Kim, “Dye-sensitized TiO2 Solar Cells Using Polymer Gel Electrolytes based on PVDF-HFP,” J. Elecetrochem. Soc., 151 (2004) E257-E260. [94] K. M. Lee, V. Suryanarayanan and K. C. Ho, “A Photo-Physical and Electrochemical Impedance Spectroscopy Study on the Quasi-Solid State Dye-Sensitized Solar Cells based on Poly(vinylidene Fluoride-co- hexafluopropylen),” J. Power Sources, 185 (2008) 1605-1612. [95] A. R. S. Priya, A. Subramania, Y. S. Jung and K. J. Kim, “High-Performance Quasi-Solid State Dye-Sensitized Solar Cell based on an Electrospun PVDF-HFP Membrane Electrolyte,” Langmuir, 24 (2008) 9816-9819. [96] D. Zhang, R. S. Li, T. Huang and A. S. Yu, “Novel Composite Polymer Electrolyte for Lithium Air Batteries,” J. Power Sources, 195 (2010) 1202-1206. [97] H. P. Wang, H. T. Huang and S. L. Wunder, “Novel Microporous Poly(Vinylidene Fluoride) Blend Electrolytes for Lithium-Ion Batteries,” J. Electrochem. Soc., 147 (2000) 2853-2861. [98] C. Marcel and J. M. Tarascon, “An All-Plastic WO3 Center DOT H2O/Polyaniline Electrochromic Device,” Solid State Ionics, 143 (2001) 89-101. [99] M. Gratzel, “Sol-Gel Processed TiO2 Films for Photovoltaic Applications,” J. Sol-Gel Sci. Technol., 22 (2001) 7-13. [100] K. R. J. Thomas, J. T. Lin, Y. C. Hsu, K. C. Ho, “Organic Dyes Containing Thienylfluorene Conjugation for Solar Cells,” Chem. Commun., 32 (2005) 4098-4100. [101] A. J. Bard, L. R. Faulkner, “Electrochemical Method, Fundamentals and Applcation,” New York: Wiley, 2001. [102] A. J. Bard, M. V. Mirkin, “Scanning Electrochemical Microscopy,” New York, Marcel Dekker Inc., 2001. [103] 黃詩雯, “以PEDOT及PMeT構成之全塞吩電致色變元件之光電性質及最適化,” 國立臺灣大學化學工程學硏究所碩士論文, 台北, 台灣 (2005). [104] M. Patel, K. G. Chandrappa, A. J. Bhattacharyya, “Increasing Ionic Conductivity and Mechanical Strength of a Plastic Electrolyte by Inclusion of a Polymer,” Electrochim. Acta, 54 (2008) 209-215. [105] P.-J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, M. Armand, “The Plastic-Crystalline Phase of Succinonitrile as a Universal Matrix for Solid-State Ionic Conductors,” Nat. Mater., 3 (2004) 476-481. [106] U. O. Krasovec, M. Topic, “Preparation and Characterisation of Nano-Structured WO3-TiO2 Layers for Photoelectrochromic Device,” J. Sol-gel Sci. Techn., 36 (2005) 45-52. [107] R. Yue, Y. Niu, Z. Wang, J. F. Douglas, X. Zhu, E. Chen, “Suppression of Crystallization in a Plastic Crystal Electrolyte (SN/LiClO4) by a Polymeric Additive (polyethylene oxide) for Battery Applications,” Polymer, 50 (2009) 1288-1296. [108] L.-Z. Fan, J. Maier, “Composite Effects in Poly(ethylene oxide)–Succinonitrile based All-Solid Electrolytes,” electrochem. commun., 8 (2006) 1753-1756. [109] 徐志宇,“高分子薄膜之電學及其應用:離子進出、電子傳遞與光電元件,”國立臺灣大學化學工程學硏究所博士論文, 台北, 台灣 (2010). [110] 李坤穆,“染料修飾二氧化鈦電極、膠態高分子電解質及無鉑對電極之染料敏化太陽電池研究,”國立臺灣大學化學工程學硏究所博士論文, 台北, 台灣 (2008). [111] C. Bourdillon, C. Demaille, J. Moiroux and J. M. Saveant, “Catalysis and Mass Transport in Spatially Ordered Enzyme Assemblies on Electrodes,” J. Am. Chem. Soc., 117 (1995) 11499-11506. [112] X. F. Yu,Y. X. Li, N. F. Zhu, Q. B. Yang and K. Kakanatr-zadeh, “A -Polyaniline Nanofibre Electrode and its Application in a Self-Powered Photoelectrochromic Cell,” Nanotechnology, 18 (2007) 015201. [113] J. J. Wu, M. D. Hsieh, W. P. Liao, W. T. Wu and J. S. Chen, “Fast-Switching Photovoltachromic Cells with Tunable Transmittance,” ACS Nano, 3 (2008) 2297-2303. [114] S. A. Sapp, G. A. Sotzing, and J. R. Reynolds, “High Contrast Ratio and Fast-switching Dual Polymer Electrochromic Devices,” Chem. Mat., 10 (1998) 2101-2108. [115] J. N. Butler, “Reference Electrodes in Aprotic Organic Solvents, in Advanced in Electrochemical Science and Engineering,” P. Delahay and C. W. Tobias eds., John Wiley & Sons, New York, 7 (1970). [116] S. Mu, ” Rechargeable Batteries based on Poly(aniline-co-o-aminophenol) and the Protonation of the Copolymer,” Synth. Met., 143 (2004) 269-275. [117] 顏翠玲,“新型聚(胺-醯亞胺)薄膜之光電性質及其與PEDOT搭配之電致色變元件研究,”國立臺灣大學化學工程學硏究所碩士論文, 台北, 台灣 (2006). [118] C. Y. Hsu, H. W. Chen, K. M. Lee, C. W. Hu, K. C. Ho, “A Dye-Sensitized Photo-Supercapacitor based on PProDOT-Et2 Thick Film,” J. Power Sources, 195 (2010) 6232-6238. [119] H. W. Chen, C. Y. Hsu, J. G. Chen, K. M. Lee, C. C. Wang, K. C. Huang, K. C. Ho, “Plastic Dye-Sensitized Photo-Supercapacitor using Electrophoretic Deposition and Compression Methods,” J. Power Sources, 195 (2010) 6225-6231. [120] W. Wieczorek, K. Such, Z. Florjanczyk, and J. R. Stevens, “Polyether, Polyacrylamide, LiClO4 Composite Electrolytes with Enhanced Conductivity,” J. Phys. Chem., 98 (1994) 6840-6850. [121] A. M. Stephan, K. S. Nahm, M. A. Kulandainathan, G. Ravi, J. Wilson, “Poly(Vinylidene Fuoride-Hexafluoropropylene) (PVdF-HFP) based Composite Electrolytes for Lithium Batteries,” Euo. Polym. J., 42 (2006) 1728-1734. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46237 | - |
| dc.description.abstract | In this thesis, the optimization of a photoelectrochromic device (PECD) toward its electro-optical performance is discussed. This system is comprised of a poly(thiophene) derivative conducting polymer, poly(3,3,-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]dioxepine)(PProDOT-Et2) as the electrochromic layer, in conjuction with gel-type electrolytes.
At first, the optical performances of PECDs are comparred using the electrolyte based on succinonitrile (Electrolyte S) and poly-(vinylidene fluoridehexa- fluoropropylene) (PVDF-HFP) (Electrolyte P). Under the light illumination and short-circuit condition for darkening the device, the devices using either electrolyte spend ca. 3s for darkening and the transmittance attenuation (ΔT) is 40%. At open-circuit condition for bleaching the device, the device using Electrolyte S exhibits the bleaching time of ca. 3 min and the other one using Electrolyte P is ca. 2 min. The difference results from crystallinity degree of the electrolyte, and resulting in difference of the ionic mobility. Thus, the relationship between the crystallinity degree of the electrolyte and the response time of the device is discussed. It is found that the crystallinity degree can be suppressed by mixing the Electrolyte P and Electrolyte S. The ionic conductivity and diffusion coefficient are increased with the decreasing of crystallinity degree. So the response time of the PECD can be improved, i.e. the bleaching time is shortened to ca. 20 s. Afterward, the electro-optical performance of the PECD is attempted to improve by combining the electrochromic material, PProDOT-Et2, with Pt. We sputtered the Pt in between the interface of PProDOT-Et2 and electrolyte (electrolyte/Pt/PProDOT-Et2/conducting substrate) and in between the interface of PProDOT-Et2 and conducting substrate (electrolyte/PProDOT-Et2/ Pt/conducting substrate), respectively, to prepare the electrochromic layer in the PECD. According to the I-V characteristic of the device, the later configuration ,compared with the former, that sputters a small amount of Pt on conducting glass before the deposition of PProDOT-Et2 shows better power output result (Voc = 0.81 V, Jsc = 0.255 mA/cm2, and conversion efficiency =0.095%). Furthermore, it is also verified from the Scanning Electrochemical microscopy, SECM, that the later electrode provides higher electron transfer rate constant. In the last part, Br2 is added into the gel electrolyte to form Br3- ions by reacting with Br- ions, which is attempted to improve the optical response and the power output performance of the PECD. It is evidenced from the analysis of SECM that the redox reaction is occurred between the Br-/ Br3- ions and the PProDOT-Et2 conducting polymer without applying any voltage. The optical response of the PProDOT-Et2 electrochromic material is thus changed. By changing the addition amount of Br2, the optimal concentration is found at 1.0 mM Br2. It is because that the redox reaction between the redox couple and the PProDOT-Et2 approaches to equilibrium. After the optimization of this device system, the transmittance attenuation and the bleaching time is ca. 32% and ca. 30 s, respectively. This device can also supply power output with Voc = 0.74 V, Jsc = 0.339 mA/cm2, and conversion efficiency=0.122%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:59:22Z (GMT). No. of bitstreams: 1 ntu-99-R97549021-1.pdf: 3273284 bytes, checksum: f9775f3f8f8cb02c1ca06eb4348dd5c0 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝…………………………………..………..………….….…I
Abstract (中文摘要)……………..…………………….….….II Abstract (English)…………………………………….….….IV Table of Contents………………………………………..…..VII List of Tables…………………………………………….…..XI List of Figures……………………………………………….XIII Chapter 1 Introduction………………………………………………....1 1-1 Electrochromic Devices…………..…………………1 1-1-1 Classification of Electrochromic Devices....5 1-1-2 Electrochromic Materials…..……………………9 1-2 Solar Cells……………………………………………12 1-2-1 History of Solar Cells…………………………12 1-2-2 Working Principle of Dye-Sensitized Solar Cells…14 1-3 Photoelectrochromic Devices (PECD)……………………16 1-3-1 Development of PECDs……………………………………16 1-3-2 Structure and Working Principle of PECDs……………18 Chapter 2 Review and Research Motivation………………….20 2-1 Conducting Polymers………………………………………….20 2-1-1 Introduction………………………………………………..20 2-1-2 Conducting Mechanism……………………………………22 2-1-2-1 Band Theory…………………………………………...22 2-1-2-2 Conduction Mechanism of Conducting Polymers……….25 2-1-3 Polythiophene and Its Derivatives…………………...27 2-1-3-1 Characteristic of PProDOT-Et2………………………31 2-1-3-2 Applications of PProDOT-Et2 to PECD……………….33 2-2 Electrolytes………………………………………………...35 2-2-1 Succinonitrile……………………………………………35 2-2-2 Gel Electrolyte based on PVDF-HFP…………………..36 2-3 Motivation and Research Objectives……………………38 Chapter 3 Experimental…………………………………………40 3-1 Instruments………………………………………...…….40 3-2 Materials and Reagents……………………………………..41 3-3 Experimental Methods………………………………………42 3-3-1 Preparation of Conducting Glasses…………………42 3-3-2 Electrochromic Layer……………………………………42 3-3-3 Photoactive Layer………………………………………43 3-3-4 Electrolytes……………………………………………..43 3-3-5 Fabrication of PECD……………………………………45 3-4 Measurements and Analysis……………………………46 3-4-1 Measurement of Optical Properties of PECD…………46 3-4-2 Measurement of Photoelectrochemical Properties of PECD………….....................................46 3-4-3 XRD Analyses of Gel and Solid Electrolytes………47 3-4-4 EIS Analyses of Gel and Solid Electrolytes……..49 3-4-5 Measurement of Diffusion Coefficients of Gel and Solid Electrolyte...............................50 3-4-6 Scanning Electrochemical Microscopy Analysis……51 Chapter 4 Results and Discussions……………………………53 4-1 The Performances of PECDs based on Succinonitrile and PVDF-HFP….........................................53 4-2 The Effect of Crystallinity of Electrolyte…………59 4-2-1 The Ionic Conductivity and Diffusion Coefficient of the Electrolytes.................................61 4-2-2 The Performances of PECD..……………………………66 4-3 Switching Behaviors of Electrolytes with/without Br2................................................70 4-4 Incorporation of Pt in Electrochromic Layer…………76 4-4-1 Different Configurations of Pt in PECD………………76 4-4-2 Different Sputtering Times of Pt……………………..80 4-4-3 Combination of Br2 and Pt into PECDs…………………82 Chapter 5 Conclusions and Suggestions…………………….88 5-1 Conclusions…………………………………………………….88 5-1-1 The Gel-type PECD as Electrochromic Device…………88 5-1-2 The Gel-type PECD as Dye-Sensitized Solar Cell……91 5-2 Suggestions…………………………………………………...94 Chapter 6 References……………………………………….………95 Appendix A………………..……..…………...…………………111 Appendix B…………………………..……...……………………114 | |
| dc.language.iso | en | |
| dc.subject | 掃描式電化學顯微鏡。 | zh_TW |
| dc.subject | 結晶度 | zh_TW |
| dc.subject | 膠態電解質 | zh_TW |
| dc.subject | 光致電變色元件 | zh_TW |
| dc.subject | 響應時間 | zh_TW |
| dc.subject | response time | en |
| dc.subject | scanning electrochemical microscopy. | en |
| dc.subject | crystallinity | en |
| dc.subject | gel electrolyte | en |
| dc.subject | photoelectrochromic device | en |
| dc.title | 最適化含膠態電解質之快速響應光致電變色元件 | zh_TW |
| dc.title | On the Optimization of Fast-Response Photoelectrochromic Device Containing Gel Electrolytes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周澤川(Tse-Chuan Chou),朱治偉(Chih-Wei Chu),林正嵐(Cheng-Lan Lin) | |
| dc.subject.keyword | 結晶度,膠態電解質,光致電變色元件,響應時間,掃描式電化學顯微鏡。, | zh_TW |
| dc.subject.keyword | crystallinity,gel electrolyte,photoelectrochromic device,response time,scanning electrochemical microscopy., | en |
| dc.relation.page | 115 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
