請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46220
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴喜美 | |
dc.contributor.author | Yu-Ping Huang | en |
dc.contributor.author | 黃玉萍 | zh_TW |
dc.date.accessioned | 2021-06-15T04:58:38Z | - |
dc.date.available | 2016-09-15 | |
dc.date.copyright | 2011-09-15 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-17 | |
dc.identifier.citation | 小松小一郎。1924。臺湾ニ於ケル稲ノ品種改良事業。臺北帝國大學附屬農林專門部學士論文。
中華民國經濟部標準檢驗局。2007。稻米詞彙. 13446 (pp. 1-4): 中華民國國家標準(CNS)。 王玉芬。2008。超微細化研磨對國產大豆原料之機能性成分的影響。國立台灣大學碩士論文。 岳玉峰,李廣和,姜洪濤。2008。色稻的研究與開發。北方水稻39 (2):78-80。 劉彩兵。2004。米糠與麥麩的超微細化研究。四川大學碩士論文。 黎傑強,朱碧岩,陳敏清。2005。特種稻米營養分析。華南師範大學學報(自然科學版),2005 (1):95-98。 AACC (2000). Approved methods of the American Association of Cereal Chemists. St. Paul, MN, USA: AACC. Abdel-Aal, E. S. M., Young, J. C., & Rabalski, I. (2006). Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry, 54(13), 4696-4704. Abdul-Hamid, A., Sulaiman, R. R. R., Osman, A., & Saari, N. (2007). Preliminary study of the chemical composition of rice milling fractions stabilized by microwave heating. Journal of Food Composition and Analysis, 20(7), 627-637. Adam, A., Crespy, V., Levrat-Verny, M. A., Leenhardt, F., Leuillet, M., Demigné, C., & Rémésy, C. (2002). The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. The Journal of Nutrition, 132(7), 1962-1968. Aguilar-Garcia, C., Gavino, G., Baragaño-Mosqueda, M., Hevia, P., & Gavino, V. C. (2007). Correlation of tocopherol, tocotrienol, γ-oryzanol and total polyphenol content in rice bran with different antioxidant capacity assays. Food Chemistry, 102(4), 1228-1232. Ahuja, U., Ahuja, S. C., Chaudhary, N., & Thakrar, R. (2007). Red rices – past, present, and future. Asian Agri-History, 11(4), 291-304. Andreasen, M. F., Christensen, L. P., Meyer, A. S., & Hansen, A. (2000). Ferulic acid dehydrodimers in rye (Secale cereale L.). Journal of Cereal Science, 31(3), 303-307. Anson, N. M., van den Berg, R., Havenaar, R., Bast, A., & Haenen, G. (2009). Bioavailability of ferulic acid is determined by its bioaccessibility. Journal of Cereal Science, 49(2), 296-300. Ariga, T., & Hamamo, M. (1990). Radical scavenging action and its mode in procyanidins B-1 and B-3 from azuki beans to peroxyl radicals. Agricultural and Biological Chemistry, 54(10), 2499-2504. Bagchi, D., Bagchi, M., Stohs, S. J., Das, D. K., Ray, S. D., Kuszynski, C. A., Joshi, S. S., & Pruess, H. G. (2000). Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology, 148(2-3), 187-197. Baker, J. B., Sonnier, E. A., & Shrefler, J. W. (1986). Integration of molinate use with water management for red rice (Oryza sativa) Control in Water-Seeded Rice (Oryza sativa). Weed Science, 34(6), 916-922. Barber, S., & de Barber, C. B. (1980). Rice bran: Chemistry and technology. In: B. S. Luh, Rice: Production and Utilization (pp. 790-862). Westport, Conn.: AVI Pub. co. Bate-Smith, E. C. (1973). Tannins of herbaceous leguminosae. Phytochemistry, 12(7), 1809-1812. Brigelius-Flohe, R., & Traber, M. G. (1999). Vitamin E: Function and metabolism. Faseb Journal, 13(10), 1145-1155. Champagne, E. T., Wood, D. F., Julianom, B. O., & Bechtel, D. B. (2004). The rice grain and its gross composition. In: E. T. Champagne, Rice: Chemistry and Technology (pp. 77-107). St. Paul, MN: American Association of Cereal Chemists. Chanliaud, E., Saulnier, L., & Thibault, J. F. (1995). Alkaline extraction and characterisation of heteroxylans from maize bran. Journal of Cereal Science, 21(2), 195-203. Chau, C. F., Wen, Y. L., & Wang, Y. T. (2006). Improvement of the functionality of a potential fruit insoluble fibre by micron technology. International Journal of Food Science & Technology, 41(9), 1054-1060. Cheng, H. H., Huang, H. Y., Chen, Y. Y., Huang, C. L., Chang, C. J., Chen, H. L., & Lai, M. H. (2010). Ameliorative effects of stabilized rice bran on type 2 diabetes patients. Annals of Nutrition and Metabolism, 56(1), 45-51. Cicero, A. F. G., & Gaddi, A. (2001). Rice bran oil and γ-oryzanol in the treatment of hyperlipoproteinaemias and other conditions. Phytotherapy Research, 15(4), 277-289. Courtois, J. (2009). Oligosaccharides from land plants and algae: Production and applications in therapeutics and biotechnology. Current Opinion in Microbiology, 12(3), 261-273. Czochanska, Z., Foo, L. Y., Newman, R. H., & Porter, L. J. (1980). Polymeric proanthocyanidins. Stereochemistry, structural units, and molecular weight. Journal of the Chemical Society, Perkin Transactions 1, 2278-2286. de Mira, N. V. M., Massaretto, I. L., Pascual, C., & Marquez, U. M. L. (2009). Comparative study of phenolic compounds in different Brazilian rice (Oryza sativa L.) genotypes. Journal of Food Composition and Analysis, 22(5), 405-409. Deprez, S., Mila, I., Huneau, J. F., Tome, D., & Scalbert, A. (2001). Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxidants & Redox Signaling, 3(6), 957-967. Ebisuno, S., Morimoto, S., Yasukawa, S., & Ohkawa, T. (1991). Results of long-term rice bran treatment on stone recurrence in hypercalciuric patients. British Journal of Urology, 67(3), 237-240. Evans, H. M., & Bishop, K. S. (1922). On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science, 56(1458), 650-651. Fadda, S., Cincotti, A., Concas, A., Pisu, M., & Cao, G. (2009). Modelling breakage and reagglomeration during fine dry grinding in ball milling devices. Powder Technology, 194(3), 207-216. FAO (2011). Food and Agricultural commodities production. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/site/339/default.aspx Faulds, C. B., & Williamson, G. (1999). The role of hydroxycinnamates in the plant cell wall. Journal of the Science of Food and Agriculture, 79(3), 393-395. Finocchiaro, F., Ferrari, B., & Gianinetti, A. (2010). A study of biodiversity of flavonoid content in the rice caryopsis evidencing simultaneous accumulation of anthocyanins and proanthocyanidins in a black-grained genotype. Journal of Cereal Science, 51(1), 28-34. Fleschhut, J., Kratzer, F., Rechkemmer, G., & Kulling, S. (2006). Stability and biotransformation of various dietary anthocyanins in vitro. European Journal of Nutrition, 45(1), 7-18. Fuleki, T., & Francis, F. J. (1968). Quantitative methods for anthocyanins. 2. Determination of total anthocyanin and degradation index for cranberry juice. Journal of Food Science, 33(1), 78-83. Garrote, G., Domínguez, H., & Parajó, J. C. (1999). Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. Journal of Chemical Technology & Biotechnology, 74(11), 1101-1109. Gerhardt, A. L., & Gallo, N. B. (1998). Full-fat rice bran and oat bran similarly reduce hypercholesterolemia in humans. The Journal of Nutrition, 128(5), 865-869. Gruppen, H., Kormelink, F. J. M., & Voragen, A. G. J. (1993). Water-unextractable cell wall material from wheat flour. 3. A structural model for arabinoxylans. Journal of Cereal Science, 18(2), 111-128. Guilloux, K., Gaillard, I., Courtois, J., Courtois, B., & Petit, E. (2009). Production of arabinoxylan-oligosaccharides from flaxseed (Linum usitatissimum). Journal of Agricultural and Food Chemistry, 57(23), 11308-11313. Hagerman, A. E., & Butler, L. G. (1981). The specificity of proanthocyanidin-protein interactions. Journal of Biological Chemistry, 256(9), 4494-4497. Hagerman, A. E., Riedl, K. M., Jones, G. A., Sovik, K. N., Ritchard, N. T., Hartzfeld, P. W., & Riechel, T. L. (1998). High molecular weight plant polyphenolics (tannins) as biological antioxidants. Journal of Agricultural and Food Chemistry, 46(5), 1887-1892. Hakala, P., Lampi, A. M., Ollilainen, V., Werner, U., Murkovic, M., Wähälä, K., Karkola, S., & Piironen, V. (2002). Steryl phenolic acid esters in cereals and their milling fractions. Journal of Agricultural and Food Chemistry, 50(19), 5300-5307. Hsu, P. K., Chien, P. J., & Chau, C. F. (2007). An exploitation of the antimicrobial potential of a fruit insoluble fibre by micronization. European Food Research and Technology, 225(2), 199-204. Iiyama, K., Lam, T. B. T., & Stone, B. A. (1994). Covalent cross-links in the cell wall. Plant Physiology, 104(2), 315-320. Izydorczyk, M. S., & Biliaderis, C. G. (1995). Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydrate Polymers, 28(1), 33-48. Jang, S., & Xu, Z. (2009). Lipophilic and hydrophilic antioxidants and their antioxidant activities in purple rice bran. Journal of Agricultural and Food Chemistry, 57(3), 858-862. Jimenez-Ramsey, L. M., Rogler, J. C., Housley, T. L., Butler, L. G., & Elkin, R. G. (1994). Absorption and distribution of 14C-labeled condensed tannins and related sorghum phenolics in chickens. Journal of Agricultural and Food Chemistry, 42(4), 963-967. Kähkönen, M. P., & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycons. Journal of Agricultural and Food Chemistry, 51(3), 628-633. Kim, K. H., Tsao, R., Yang, R., & Cui, S. W. (2006). Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chemistry, 95(3), 466-473. Ko, S. N., Kim, C. J., Kim, H., Chung, S. H., Lee, S. M., Yoon, H. H., & Kim, I. H. (2003). Changes of vitamin E content in rice bran with different heat treatment. European Journal of Lipid Science and Technology, 105(5), 225-228. Kong, S., & Lee, J. (2010). Antioxidants in milling fractions of black rice cultivars. Food Chemistry, 120(1), 278-281. Krishnan, S., & Dayanandan, P. (2003). Structural and histochemical studies on grain-filling in the caryopsis of rice (Oryza sativa L.). Journal of Biosciences, 28(4), 455-469. Krygier, K., Sosulski, F., & Hogge, L. (1982). Free, esterified, and insoluble-bound phenolic-acids.1. extraction and purification procedure. Journal of Agricultural and Food Chemistry, 30(2), 330-334. Lafay, S., & Gil-Izquierdo, A. (2008). Bioavailability of phenolic acids. Phytochemistry Reviews, 7(2), 301-311. Lai, V. M. F., Lu, S., He, W. H., & Chen, H. H. (2007). Non-starch polysaccharide compositions of rice grains with respect to rice variety and degree of milling. Food Chemistry, 101(3), 1205-1210. Lamberts, L., De Bie, E., Vandeputte, G. E., Veraverbeke, W. S., Derycke, V., De Man, W., & Delcour, J. A. (2007). Effect of milling on colour and nutritional properties of rice. Food Chemistry, 100(4), 1496-1503. Lapidot, T., Harel, S., Granit, R., & Kanner, J. (1998). Bioavailability of red wine anthocyanins as detected in human urine. Journal of Agricultural and Food Chemistry, 46(10), 4297-4302. Lee, J. W., Lee, S. W., Kim, M. K., Rhee, C., Kim, I. H., & Lee, K. W. (2005). Beneficial effect of the unsaponifiable matter from rice bran on oxidative stress in vitro compared with α-tocopherol. Journal of the Science of Food and Agriculture, 85(3), 493-498. Lerma-García, M. J., Herrero-Martínez, J. M., Simó-Alfonso, E. F., Mendonça, C. R. B., & Ramis-Ramos, G. (2009). Composition, industrial processing and applications of rice bran γ-oryzanol. Food Chemistry, 115(2), 389-404. Li, X. C., Yu, C., Cai, Y. B., Liu, G. Y., Jia, J. Y., & Wang, Y. P. (2005). Simultaneous determination of six phenolic constituents of danshen in human serum using liquid chromatography/tandem mass spectrometry. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 820(1), 41-47. Lii, C., Chen, C. H., Yeh, A. I., & Lai, V. M. F. (1999). Preliminary study on the degradation kinetics of agarose and carrageenans by ultrasound. Food Hydrocolloids, 13(6), 477-481. Lin, P. Y., & Lai, H. M. (2006). Bioactive compounds in legumes and their germinated products. Journal of Agricultural and Food Chemistry, 54(11), 3807-3814. Lin, P. Y., & Lai, H. M. (2011). Bioactive compounds in rice during grain development. Food Chemistry, 127(1), 86-93. Lu, S., & Luh, B. S. (1991). Properties of the rice caryopsis. In: B. S. Luh, Rice, vol. 1 (pp. 389-419). New York, NY: Van Nostrand Reinhold. Lynn, D. Y. C., & Luh, B. S. (1964). Anthocyanin Pigments in Bing Cherriesa. Journal of Food Science, 29(6), 735-743. Meiers, S., Kemény, M., Weyand, U., Gastpar, R., von Angerer, E., & Marko, D. (2001). The Anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. Journal of Agricultural and Food Chemistry, 49(2), 958-962. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. Mio, H., Kano, J., & Saito, F. (2004). Scale-up method of planetary ball mill. Chemical Engineering Science, 59(24), 5909-5916. Miyazawa, T., Nakagawa, K., Kudo, M., Muraishi, K., & Someya, K. (1999). Direct intestinal absorption of red fruit anthocyanins, cyanidin-3-glucoside and cyanidin-3,5-diglucoside, into rats and humans. Journal of Agricultural and Food Chemistry, 47(3), 1083-1091. Most, M. M., Tulley, R., Morales, S., & Lefevre, M. (2005). Rice bran oil, not fiber, lowers cholesterol in humans. The American Journal of Clinical Nutrition, 81(1), 64-68. Muralikrishna, G., & Rao, M. V. S. S. T. S. (2007). Cereal non-cellulosic polysaccharides: structure and function relationship - an overview. Critical Reviews in Food Science and Nutrition, 47(599-610). Nabarlatz, D., Ebringerová, A., & Montané, D. (2007). Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. Carbohydrate Polymers, 69(1), 20-28. Nam, S. H., Choi, S. P., Kang, M. Y., Koh, H. J., Kozukue, N., & Friedman, M. (2006). Antioxidative activities of bran extracts from twenty one pigmented rice cultivars. Food Chemistry, 94(4), 613-620. Nicolosi, R. J., Austrian, L. M., & Hegsted, D. M. (1991). Rice bran oil lowers serum total and low density lipoprotein cholesterol and apo B levels in nonhuman primates. Atherosclerosis, 88(2-3), 133-142. Nino-Medina, G., Carvajal-Millan, E., Rascon-Chu, A., Marquez-Escalante, J. A., Guerrero, V., & Salas-Munoz, E. (2010). Feruloylated arabinoxylans and arabinoxylan gels: structure, sources and applications. Phytochemistry Reviews, 9(1), 111-120. NIST (2011). NIST Chemistry WebBook. National Institute of Standards and Technology (NIST). http://webbook.nist.gov/chemistry/ Onofrejová, L., Vasícková, J., Klejdus, B., Stratil, P., Misurcová, L., Krácmar, S., Kopecký, J., & Vacek, J. (2010). Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 464-470. Orthoefer, F. T. (1995). Rice bran oil. In: Y. H. Hui, Bailey's Industrial Oil and Fat Products (pp. 393-409). New York, NY, USA: Wiley & Sons. Orthoefer, F. T. (2001). Rice bran oil: Composition, production, nutrition and utilization. In: R. F. Wilson, Proceeding of the World Conference on Oilseed Processing Utilization (pp. 151-158). Champaign, IL, USA: AOCS Press. Orthoefer, F. T., & Eastman, J. (2004). Rice bran and oil. In: E. T. Champagne, Rice: Chemistry and Technology (pp. 569-593). St. Paul, MN: American Association of Cereal Chemists. Pastell, H., Tuomainen, P., Virkki, L., & Tenkanen, M. (2008). Step-wise enzymatic preparation and structural characterization of singly and doubly substituted arabinoxylo-oligosaccharides with non-reducing end terminal branches. Carbohydrate Research, 343(18), 3049-3057. Pastell, H., Virkki, L., Harju, E., Tuomainen, P., & Tenkanen, M. (2009). Presence of 1→3-linked 2-O-β-D-xylopyranosyl-α-L-arabinofuranosyl side chains in cereal arabinoxylans. Carbohydrate Research, 344(18), 2480-2488. Pedreschi, R., & Cisneros-Zevallos, L. (2007). Phenolic profiles of Andean purple corn (Zea mays L.). Food Chemistry, 100(3), 956-963. Pérez-Jiménez, J., & Saura-Calixto, F. (2005). Literature data may underestimate the actual antioxidant capacity of cereals. Journal of Agricultural and Food Chemistry, 53(12), 5036-5040. Prior, R. L. (2003). Fruits and vegetables in the prevention of cellular oxidative damage. The American Journal of Clinical Nutrition, 78(3), 570S-578S. Raghuram, T. C., Rao, U. B., & Rukmini, C. (1989). Studies on hypolipidemic effects of dietary rice bran oil in human-subjects. Nutrition Reports International, 39(5), 889-895. Ralph, J., Quideau, S., Grabber, J. H., & Hatfield, R. D. (1994). Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. Journal of the Chemical Society, Perkin Transactions 1(23), 3485-3498. Ramirez-Tortosa, C., Andersen, Ø. M., Gardner, P. T., Morrice, P. C., Wood, S. G., Duthie, S. J., Collins, A. R., & Duthie, G. G. (2001). Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radical Biology and Medicine, 31(9), 1033-1037. Rattanachitthawat, S., Suwannalert, P., Riengrojpitak, S., Chaiyasut, C., & Pantuwatana, S. (2010). Phenolic content and antioxidant activities in red unpolished Thai rice prevents oxidative stress in rats. Journal of Medicinal Plants Research, 4(9), 796-801. Renger, A., & Steinhart, H. (2000). Ferulic acid dehydrodimers as structural elements in cereal dietary fibre. European Food Research and Technology, 211(6), 422-428. Rose, D. J., & Inglett, G. E. (2010). Production of feruloylated arabinoxylo-oligosaccharides from maize (Zea mays) bran by microwave-assisted autohydrolysis. Food Chemistry, 119(4), 1613-1618. Rukmini, C., & Raghuram, T. C. (1991). Nutritional and biochemical aspects of the hypolipidemic action of rice bran oil: a review. Journal of the American College of Nutrition, 10(6), 593-601. Saunders, R. M. (1985). Rice bran: Composition and potential food uses. Food Reviews International, 1(3), 465 - 495. Sayre, B., & Saunders, R. (1990). Rice bran and rice bran oil. Lipid technology, 2, 72-79. Seetharamaiah, G. S., & Chandrasekhara, N. (1989). Studies on hypocholesterolemic activity of rice bran oil. Atherosclerosis, 78(2-3), 219-223. Sen, C. K., Khanna, S., & Roy, S. (2006). Tocotrienols: Vitamin E beyond tocopherols. Life Sciences, 78(18), 2088-2098. Sharma, R., & Rukmini, C. (1986). Rice bran oil and hypocholesterolemia in rats. Lipids, 21(11), 715-717. Shen, Y., Jin, L., Xiao, P., Lu, Y., & Bao, J. (2009). Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. Journal of Cereal Science, 49(1), 106-111. Shibuya, N. (1984). Phenolic acids and their carbohydrate esters in rice endosperm cell walls. Phytochemistry, 23(10), 2233-2237. Shibuya, N. (1989). Comparative studies on the cell wall polymers obtained from different parts of rice grains. Plant Cell Wall Polymers, vol. 399 (pp. 333-344): American Chemical Society. Shibuya, N., & Iwasaki, T. (1985). Structural features of rice bran hemicellulose. Phytochemistry, 24(2), 285-289. Shibuya, N., Nakane, R., Yasui, A., Tanaka, K., & Iwasaki, T. (1985). Comparative studies on cell-wall preparations from rice bran, germ, and endosperm. Cereal Chemistry, 62(4), 252-258. Smith, M. M., & Hartley, R. D. (1983). Occurrence and nature of ferulic acid substitution of cell-wall polysaccharides in graminaceous plants. Carbohydrate Research, 118, 65-80. Sompong, R., Siebenhandl-Ehn, S., Linsberger-Martin, G., & Berghofer, E. (2011). Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chemistry, 124(1), 132-140. Sookwong, P., Nakagawa, K., Murata, K., Kojima, Y., & Miyazawa, T. (2007). Quantitation of tocotrienol and tocopherol in various rice brans. Journal of Agricultural and Food Chemistry, 55(2), 461-466. Sosulski, F., Krygier, K., & Hogge, L. (1982). Free, esterified, and insoluble-bound phenolic acids.3. composition of phenolic-acids in cereal and potato flours. Journal of Agricultural and Food Chemistry, 30(2), 337-340. Stalikas, C. D. (2007). Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Separation Science, 30(18), 3268-3295. Sugano, M., & Tsuji, E. (1997). Rice bran oil and cholesterol metabolism. The Journal of Nutrition, 127(3), 521S-524S. Swennen, K., Courtin, C. M., & Delcour, J. A. (2006). Non-digestible oligosaccharides with prebiotic properties. Critical Reviews in Food Science and Nutrition, 46(6), 459-471. Taga, M. S., Miller, E. E., & Pratt, D. E. (1984). Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists Society, 61(5), 928-931. Tazi, L., & Zeiger, E. (2006). Cell walls: Structure, biogenesis, and expansion. In: L. Tazi, Plant Physiology (pp. 349-375). Sunderland, MA, USA: Sinauer Associates, Inc. Tian, S., Nakamura, K., Cui, T., & Kayahara, H. (2005). High-performance liquid chromatographic determination of phenolic compounds in rice. Journal of Chromatography A, 1063(1-2), 121-128. Tømmeraas, K., Vårum, K. M., Christensen, B. E., & Smidsrød, O. (2001). Preparation and characterisation of oligosaccharides produced by nitrous acid depolymerisation of chitosans. Carbohydrate Research, 333(2), 137-144. Van Craeyveld, V., Delcour, J. A., & Courtin, C. M. (2008). Ball milling improves extractability and affects molecular properties of psyllium (Plantago ovata Forsk) seed husk arabinoxylan. Journal of Agricultural and Food Chemistry, 56(23), 11306-11311. Van Craeyveld, V., Holopainen, U., Selinheimo, E., Poutanen, K., Delcour, J. A., & Courtin, C. M. (2009). Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation. Journal of Agricultural and Food Chemistry, 57(18), 8467-8473. Verma, B., Hucl, P., & Chibbar, R. N. (2009). Phenolic acid composition and antioxidant capacity of acid and alkali hydrolysed wheat bran fractions. Food Chemistry, 116(4), 947-954. Vermerris, W., & Nicholson, R. (2008). Families of phenolic compounds and means of classification. In: W. Vermerris, & R. Nicholson, Phenolic Compound Biochemistry (pp. 1-31). Dordrecht: Springer. Wadsworth, J. I. (1991). Milling. In: B. S. Luh, Rice, vol. 1 (pp. 347-388). New York, NY: Van Nostrand Reinhold. Wang, H. B., Nair, M. G., Strasburg, G. M., Chang, Y. C., Booren, A. M., Gray, J. I., & DeWitt, D. L. (1999). Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. Journal of Natural Products, 62(2), 294-296. Wang, Q., Han, P. H., Zhang, M. W., Xia, M., Zhu, H. L., Ma, J., Hou, M. J., Tang, Z. H., & Ling, W. H. (2007). Supplementation of black rice pigment fraction improves antioxidant and anti-inflammatory status in patients with coronary heart disease. Asia Pacific Journal of Clinical Nutrition, 16, 295-301. Watanabe, M., Ohshita, Y., & Tsushida, T. (1997). Antioxidant compounds from buckwheat (Fagopyrum esculentum Moench) hulls. Journal of Agricultural and Food Chemistry, 45(4), 1039-1044. Wu, X. L., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., & Prior, R. L. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54(11), 4069-4075. Zhang, L. H., Xu, H. D., & Li, S. F. (2009). Effects of micronization on properties of Chaenomeles sinensis (Thouin) Koehne fruit powder. Innovative Food Science & Emerging Technologies, 10(4), 633-637. Zhang, M. W., Zhang, R. F., Zhang, F. X., & Liu, R. H. (2010). Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. Journal of Agricultural and Food Chemistry, 58(13), 7580-7587. Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. Zhou, Z. K., Robards, K., Helliwell, S., & Blanchard, C. (2004). The distribution of phenolic acids in rice. Food Chemistry, 87(3), 401-406. Zhu, K., Huang, S., Peng, W., Qian, H., & Zhou, H. (2010). Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Research International, 43(4), 943-948. Zingg, J. M. (2007). Vitamin E: An overview of major research directions. Molecular Aspects of Medicine, 28(5-6), 400-422. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46220 | - |
dc.description.abstract | 本研究分為兩大部分,第一部分對花蓮太巴塱黑糯米1 (HB1)、台灣西部黑米(WB)、泰國黑米(TB)、花蓮太巴塱紅糯米1 (HR1)、光復紅米(HR)及泰國紅米(TR)等六種有色米米糠中所含的生物活性成分進行分析,第二部分則以花蓮太巴塱黑糯米2 (HB2)及花蓮太巴塱紅糯米2 (HR2)之米糠為材料,藉由球磨與酵素水解製備阿拉伯木寡醣(arabinoxylan oligosaccharides, AXOS)。有色米米糠生物活性成分分析中,依碾白時去除的先後順序,將米糠分為一次及二次碾白米糠兩個劃分(RB-1st及RB-2nd);出麩率分別為10-19與6-11 wt%)。結果顯示,總酚含量、總類黃酮含量、DPPH自由基清除力與還原力等抗氧化性質,皆以游離態者(如RB-1st依序為17.89–36.70 mg ferulic acid equiv/g、11.72–12.17 mg catechin equiv/g、18.94–49.99 mg trolox equiv/g及13.27–28.18 mg ascorbic acid equiv/g)高於結合態者(如RB-1st依序為2.92–6.92 mg ferulic acid equiv/g、0.79–2.85 mg catechin equiv/g、2.40–6.86 mg trolox equiv/g及2.13–5.51 mg ascorbic acid equiv/g);RB-1st高於RB-2nd,此外,在紅米RB-1st中游離態之總酚含量及抗氧化活性皆顯著高於黑米。花青素及原花青素分別在黑米(如RB-1st為6.28–11.27 mg Cy3glc equiv/g)及紅米米糠(如RB-1st為12.16–19.13 mg catechin equiv/g)中具有豐富的含量,亦主要分布於RB-1st。有色米米糠中的酚酸多以結合態存在,黑米中含量較高者依序為阿魏酸、原兒茶酸與香草酸;紅米中亦是以阿魏酸含量最高,而香豆酸次之。此外,利用串聯質譜技術,鑑定出紅米的HPLC圖譜中一未知化合物為原兒茶醛。有色米米糠中的維生素E以α-生育酚(13.12–67.30 μg/g)及γ-生育三烯酚(16.91–53.09 μg/g)含量較高。AXOS的製備再分為兩小部分,一是以生產機能性食品配料為導向,透過球磨處理,提升米糠中的水溶性阿拉伯木聚醣(water-extractable arabinoxylan, WE-AX)含量;另一是藉由聚木醣酶水解米糠不可溶性膳食纖維(RBIDF)中的阿拉伯木聚醣,以生產AXOS,並探討在木聚醣酶水解前預先施以球磨處理,對酵素水解效率的影響。結果顯示,有色米米糠經過乾式或濕式球磨後,粒徑皆大幅降低,而其WE-AX含量皆大幅提升,以濕磨增加速度較快,但可到達的極限值較乾磨低,另在球磨過程中對於酚類化合物、花青素、原花青素等生物活性成分的破壞,乾磨相對較低。RBIDF的球磨處理中,採用濕磨可使其WE-AX大量增加,而使用乾磨則增加的量極低,且難以達到細磨的效果。經濕磨處理之RBIDF,進一步以木聚醣酶水解後,其還原糖的增加量(29.5 μmol Xyl equiv/g RBIDF)高於未經濕磨預處理者(15.3 μmol Xyl equiv/g RBIDF),因此,濕磨預處理應有助於提高木聚醣酶的水解效率。 | zh_TW |
dc.description.abstract | This study consisted of two parts. First, bioactive compounds in rice bran from six colored rice samples (Hualien Taibalang black waxy rice 1, HB1; Western black rice, WB; Thai black rice, TB; Hualien Taibalang red waxy rice 1, HR1; Guangfu red rice, GR; Thai red rice, TR) were analyzed. Second, arabinoxylan oligosaccharides (AXOS) were prepared from the rice bran of Hualien Taibalang balck waxy rice 2 (HB2) and Hualien Taibalang red waxy rice 2 (HR2). Ball milling and enzymatic hydrolysis was used for AXOS preparation. In the first part, the colored rice bran was collected from first and second milling periods (RB-1st and RB-2nd, respectively) and used for analyses. Total phenolic content, total flavonoid content, DPPH radical scavenging activity, and reducing power of colored rice bran were higher in free form (e.g. 17.89–36.70 mg ferulic acid equiv/g, 11.72–12.17 mg catechin equiv/g, 18.94–49.99 mg trolox equiv/g, and 13.27–28.18 mg ascorbic acid equiv/g according to the order above in RB-1st) than in bound form (e.g. 2.92–6.92 mg ferulic acid equiv/g, 0.79–2.85 mg catechin equiv/g, 2.40–6.86 mg trolox equiv/g, and 2.13–5.51 mg ascorbic acid equiv/g according to the order above in RB-1st) and higher in RB-1st than in RB-2nd. In addition, total free phenolic content and antioxidant activities in the RB-1st of the red rice bran were significantly higher than that of the black one. There were plentiful anthocyanins and proanthocyanidins in black (e.g. 6.28–11.27 mg Cy3glc equiv/g in RB-1st) and red rice bran (e.g. 12.16–19.13 mg catechin equiv/g in RB-1st), respectively, especially in RB-1st. Phenolic acids in colored rice bran were mainly in bound form. Ferulic, protocatechuic, and vanillic acids were the dominant phenolic acids in black rice. In red rice, ferulic acid was also the most abundant phenolic acid followed by p-coumaric acid. Moreover, one novel phenolic compound, 3,4-dihydroxybenzaldehyde, was the first time to be identified in the bound phenolics extract from RB-1st of red rice bran by using HPLC-DAD/ESI-MS-MS. α-Tocopherol (13.12–67.30 μg/g) and γ-tocotrienol (16.91–53.09 μg/g) were the most abundant forms of vitamin E in the colored rice bran. The potential of colored rice bran to be used as a functional food ingredient through ball milling was examined in the second part. Besides, the effect of ball milling pretreatment on the efficiency of enzymatic hydrolysis of AX in rice bran insoluble dietary fiber (RBIDF) was also investigated. After either dry or wet ball milling of colored rice bran, the particle size decreased dramatically while water-extractable arabinoxylan (WE-AX) bran increased significantly. Compared to the dry ball milling process, WE-AX in colored rice bran increased more rapidly during wet ball milling. However, the maximum amount of WE-AX after wet ball milling was lower than that from the dry ball milling. In addition, the degradation of some bioactive compounds was severer in wet milling process than that in the dry ball milling. WE-AX in RBIDF increased substantially in wet ball milling process but not in dry ball milling process. Both untreated and wet ball milled RBIDF were further hydrolyzed with xylanase. The increase of reducing sugar was higher in wet ball milled RBIDF (29.5 μmol Xyl equiv/g RBIDF) than in the control sample (15.3 μmol Xyl equiv/g RBIDF). As a result, wet ball milling pretreatment could improve the efficiency of enzymatic hydrolysis of AX in RBDIF. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:58:38Z (GMT). No. of bitstreams: 1 ntu-100-R98623025-1.pdf: 4353323 bytes, checksum: 1269330343704b005bd4f4f60ea7d39c (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 謝 辭 I
摘 要 II Abstract IV 目 錄 VI 圖目錄 X 表目錄 XII 第一章、前言 1 第二章、文獻整理 3 一、有色米 3 (一) 有色米簡介 3 (二) 米糠簡介 5 (三) 有色米米糠之生物活性成分 7 1. 花青素 7 2. 原花青素 9 3. 酚酸 10 4. 維生素E 12 5. 米糠醇 13 二、稻米之阿拉伯木聚醣 14 (一) 植物細胞壁多醣 14 (二) 稻米細胞壁多醣 15 (三) 穀物之阿拉伯木聚醣 16 1. 穀物之阿拉伯木聚醣簡介 16 2. 稻米之阿拉伯木聚醣 18 3. 其他穀物之阿拉伯木聚醣 19 三、由植物多醣製備之寡醣 19 (一) 寡醣簡介 19 (二) 製備方法 20 1. 酸水解 20 2. 自水解 20 3. 酵素水解 21 4. 物理方法 21 第三章、材料與方法 22 一、材料與試劑 22 (一) 有色米米糠樣品 22 (二) 試劑 23 二、樣品處理 24 (一) 微波加熱安定化 24 (二) 脫脂米糠/脫脂安定化米糠(Defatted rice bran, DRB/Defatted SRB, DSRB)之製備 24 (三) 米糠不可溶性膳食纖維(Rice bran insoluble dietary fiber, RBIDF)製備 24 (四) 球磨處理 25 (五) 聚木醣酶水解 25 三、分析方法 25 (一) 一般成分分析 25 1. 水分含量測定 25 2. 粗脂肪含量測定 26 3. 粗蛋白質含量測定 26 4. 灰分含量測定 26 5. 膳食纖維含量測定 26 (二) 酚類化合物分析 27 1. 酚類化合物萃取與劃分 27 2. 總酚含量與總類黃酮含量測定 29 3. 酚酸組成分析 29 4. 酚類化合物鑑定 30 (三) 抗氧化活性分析 30 1. DPPH自由基清除力測定 30 2. 還原力測定 30 (四) 色素成分分析 31 1. 總花青素含量測定 31 2. 總原花青素含量測定 31 (五) 維生素E及米糠醇分析 32 (六) 游離脂肪酸含量測定 32 (七) 水溶性碳水化合物性質分析 33 1. 水溶性阿拉伯木聚醣(water-extractable arabinoxylan, WE-AX)含量分析 33 2. 水溶性碳水化合物分子量分布 33 (八) 粉體粒徑及形態分析 34 1. 粒徑分析 34 2. 掃描式電子顯微鏡觀察 34 (九) 還原糖含量測定 34 (十) 統計分析 34 第四章、結果與討論 35 一、有色米米糠之一般成分 35 二、有色米米糠之生物活性成分 38 (一) 總酚與總類黃酮含量 38 (二) 抗氧化活性 41 (三) 花青素與原花青素 41 (四) 酚酸組成與原兒茶醛之鑑定 43 (五) 維生素E及米糠醇 50 三、微波加熱安定化 53 四、有色米米糠與米糠IDF中非纖維素碳水化合物之單醣組成 56 五、球磨對有色米米糠之影響 57 (一) 全脂與脫脂有色米米糠之乾式球磨處理比較 57 (二) 有色米米糠之乾式與濕式球磨處理 59 1. 研磨狀態 59 2. 形態與粒徑 61 3. 米糠AX水溶解度 68 4. 總酚含量 70 5. 花青素與原花青素 72 6. 綜合比較 74 六、有色米米糠IDF的球磨與酵素處理 76 (一) 乾式與濕式球磨處理 76 1. 研磨型態 76 2. 粒徑分布 76 3. RBIDF之AX水溶解度 77 4. 分子量分布 78 (二) 以濕式球磨與木聚醣酶水解階段式處理RBIDF 80 1. 酵素用量及水解時間之影響 80 2. 球磨對木聚醣酶水解效率之影響 81 第五章、結論 83 第六章、參考文獻 84 | |
dc.language.iso | zh-TW | |
dc.title | 有色米米糠之生物活性成分分析及阿拉伯木寡醣製備 | zh_TW |
dc.title | Colored Rice Bran: Analyses of Bioactive Compounds and Preparation of Arabinoxylan Oligosaccharides | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江文章,張永和,鄭統隆,呂廷璋 | |
dc.subject.keyword | 黑米,紅米,米糠,酚類化合物,原兒茶醛,阿拉伯木寡醣,球磨, | zh_TW |
dc.subject.keyword | black rice,red rice,rice bran,phenolics,protocatechualdehyde,arabinoxylan oligosaccharides,ball milling, | en |
dc.relation.page | 94 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 4.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。