請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46218
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林銘郎 | |
dc.contributor.author | Wei-Tung Nien | en |
dc.contributor.author | 粘為東 | zh_TW |
dc.date.accessioned | 2021-06-15T04:58:31Z | - |
dc.date.available | 2010-08-02 | |
dc.date.copyright | 2010-08-02 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-28 | |
dc.identifier.citation | 王景平 (2002),地表單斜皺摺與盲斷層之幾何關係探討,國立台灣大學土木工程研究所碩士論文,台北。
吳杰佑 (2008),逆斷層作用與土層內樁基礎之互制關係,國立台灣大學土木工程研究所碩士論文,台北。 彭建豪 (2008),九份二山地滑地區滑動歷程與堆積行為之研究,國立台灣大學土木工程研究所碩士論文,台北。 鐘春富 (2007),逆斷層錯動引致上覆土層變形行為及對結構物影響之研究,國立台灣大學土木工程研究所博士論文,台北。 Allmendinger, R.W., Shaw, J.H., 2000. Estimation of fault propagation distance from fold shape: Implications for earthquake hazard assessment. Geology 28, 1099-1102. Erslev, E.A., 1991. Trishear fault-propagation folding. Geology 19, 617-620. Itasca Consulting Group, Inc. 2000. FLAC-Fast Lagrangian Analysis of Continua, Version 4.0, Theory and Background, pp. 1-9. Itasca Consulting Group, Inc. Minneapolis, Minnesota, U.S.A. Lin, M.L., Chung, C.F., Jeng, F.S., 2006. Deformation of overburden soil induced thrust fault slip. Engineering Geology No.88, 70-89. Department of Civil Engineering, National Taiwan University, Taiwan. Lin, M.L., Chung, C.F., Jeng, F.S., Yao, T.C., 2007. The deformation of overburden soil induced by thrust faulting and its impact on underground tunnels. Engineering Geology No.92, 110-132. Department of Civil Engineering, National Taiwan University, Taiwan. Liu, S.H., 2006. Simulating a direct shear box test by DEM. Can Geotech J 43. Ni, Q., Powrie, W., Zhang, X., Harkness, R., 2000. Effect of particle properties on soil behaviour: 3-D numerical modeling of shear box tests. ASCE Geotechnical Special Publication No.96, 58-70. Potyondy, D., Cundall, P,. 2004. A Bonded-Particle Model for Rock. International Journal of Rock Mechanics & Mining Sciences 41, 1329-1364. Ramsay, J.G., Huber, M.I., 1983. The Techniques of Modern Structural Geology Volume 1:Strain Analysis. Skempton, A.W., F.R.S, 1966. Some observations on tectonic shear zones. Proceedings of 1st International Congress on Rock Mechanics, 329–335. Sebastian, L.G., Luis, E.V., 2005. Discrete Element Method Evaluation of Granular Crushing under Direct Shear Test Conditions. Technical Note. Thornton, C., Zhang, L., 2003. Numerical simulations of the direct shear test. Chem. Engng Technol 26 No. 2, 153-156. Wang, C., Tannant, D.D., Lilly, P.A., 2003. Numerical analysis of the stability of heavily jointed rock slopes using PFC2D. International Journal of Rock Mechanics & Mining Sciences 40, 415-424. Wang, J., Dove, J.E., Gutierrez, M.S., 2007. Discrete-continuum analysis of shear banding in the direct shear test. Geotechnique 57 No.6, 513-526. Wang, Y.C., Yin, X.C., Ke, K.J., Xia, M.F., Peng, K.Y., 2000. Numerical simulation of rock failure and earthquake process on mesoscopic scale. Pure Applied Geophysics, Vol. 157, 1905-1925. Zehnder, A.T., Allmendinger, R.W., 2000. Velocity field for the trishear model. Journal of Structural Geology 22, 1009-1014. Zhang, L., Thornton, C., 2007. A numerical examination of the direct shear test. Geotechnique 57 No.4, 343-354. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46218 | - |
dc.description.abstract | 過去的工程師習慣使用連續體的分析方法來模擬砂土問題,但是常常碰到模擬過程中無法解決破裂及翻滾的情形,為了解析真實土壤所受到的應力應變情形,使用非連續體分析方法來模擬各種實驗及現地狀況的研究是越來越多。但是儘管如此,剪動帶的位置該如何定義仍舊是一個尚待深入了解的課題。
有鑑於此,本研究使用非續體力學的商用軟體PFC2D針對土壤力學實驗中最基本的直剪實驗做模擬,目標是提出一個可以在非連續體分析中圈繪剪動帶的方法學。首先定義如何計算試體中受到的剪力應變量:定義方式參照Ramsay and Huber(1983)提出之構造地質學的解析方法,將均質應變的剪力應變量用橢圓率(ellipticity, R)來表示,橢圓率R為剪應變γ之關係式。接著再定義節點網格,就是將試體劃分成許多矩形區塊,每個矩形區域可視為一個計算剪力應變量的最小單元,稱之為節點網格,當節點網格的大小很小的時候,其應變可視為均質應變,也就可以使用R代表該節點網格的剪力應變量。根據以上兩項定義可以求得各個節點網格的剪力應變量,再依照各節點網格受到的剪力應變量的大小給予不同的代表顏色,如此一來即可看到剪動帶的分佈。最後再將這個圈繪剪動帶的方法學應用在斷層砂箱模擬及邊坡滑動模擬,並將斷層砂箱的模擬結果與鐘春富(2007)的研究進行比對。 由於PFC2D本身無法直接計算一堆顆粒的應變量,因此本研究使用矩陣運算軟體Matlab,自行編寫計算應變量的程式來計算應變量。 由本研究的模擬結果可以看到剪動帶在直剪實驗中呈現水平的帶狀,並且外型就像一個凸透鏡一樣,並且在剪動帶的內部會有許多顆粒翻滾的現象。在斷層砂箱的模擬中可以看到剪動帶在土層中的發展,及三角剪切帶之破裂尖端的位置。而在邊坡滑動的模擬結果當中可以看到弧型滑動的位置及其發展過程,還有張裂縫的出現。 | zh_TW |
dc.description.abstract | Engineers are accustomed to using finite element method (FEM) to simulate the failure problem in sand. In this way, however, they are unable to solve the case with rapture and rolling. In order to analyse the real stress and strain situation in soil, more and more researchers choose to use distinct element method (DEM) to simulate the physics experiment and field problem. Nevertheless, the shear zone localization is still a significant issue to be further studied.
In order to localize the shear zone, this research simulates the most basic soil experiment, direct shear test, by using a DEM software PFC2D, trying to propose a method which can point out the shear zone location. According to a structural geologic analysis method recommended by Ramsay and Huber (1983), this study defines the homogeneous strain in the soil by ellipticity R. R is a relative physical quantity to shear strain γ which is more familiar to engineers. Then this study set many grid points in the direct shear test simulation, separating the simulating soil into several squares with same area size. Every square is a shear strain calculating unit named grid square. The shear strain can be regarded as homogeneous if the grid square is small enough, and then the shear strain of the grid square can be represented by the ellipticity R. Combining two definition mentioned above, we can calculate the shear strain of every single grid square. Then, it is clear to localize the shear zone by giving every square different color related to its shear strain. Finally, this study also localize the shear zone in the fault sand box simulation and land slide simulation, and compare the result in the fault sand box in this study with the research studied by Chung (2007). No program can calculate the ellipticity in PFC2D, so in this study matrix calculating software MatLab is used to develop a program that can solve this problem. The simulation results indicate that the shear zone in the direct shear test is horizontal and its shape looks like lens. Also, particle rolling inside the shear zone can be observed. In the fault sand box simulation, the result demonstrates the development of the shear zone and the fault tip of tri-shear zone. In the land slide simulation, the result demonstrates the development of sliding surface and the appearance of tension crack. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:58:31Z (GMT). No. of bitstreams: 1 ntu-99-R97521107-1.pdf: 43709538 bytes, checksum: 290ea0904ca0e13a3aff1384fea20018 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 III 摘要 V ABSTRACT VII 目錄 IX 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2研究方法與流程 3 1.3 研究內容 4 第二章 文獻回顧 9 2.1應用非連續分析方法模擬直剪實驗 9 2.2 平面應變中的剪力應變量 11 2.2.1定義剪力應變場 11 2.2.2計算剪力應變場 13 2.3 剪動帶內的滑動面 14 2.4 三角剪切帶理論 14 第三章 研究方法 22 3.1 軟體簡介 22 3.1.1 PFC2D 22 3.1.2 MatLab 23 3.2基本模型建立 23 3.2.1直剪實驗模擬基本模型 23 3.2.2斷層砂箱實驗模擬基本模型 24 3.2.3邊坡滑動模擬基本模型 24 3.3參數設定與設置網格及節點 25 3.3.1直剪實驗 25 3.3.2斷層砂箱模擬 26 3.3.3邊坡滑動模擬 26 3.3.4設置節點網格 26 第四章 直剪實驗數值模擬成果 37 4.1 微觀參數與巨觀參數之比較 37 4.1.1應力比(τ/σ)之變化 37 4.1.2孔隙率之變化 37 4.1.3頂板高度之變化 38 4.2剪動帶發展過程與特性 38 4.2.1相關名詞定義 38 4.2.2剪動帶發展過程 39 4.2.3體積應變之特性 41 4.2.4滾動顆粒之特性 41 4.3微觀參數對剪動帶之影響 42 4.3.1正向應力對剪動帶之影響 42 4.3.2顆粒間摩擦係數對剪動帶之影響 42 4.3.3剪動速率對剪動帶之影響 43 第五章 斷層砂箱及邊坡滑動數值模擬成果 55 5.1 斷層砂箱模擬成果 55 5.1.1相關名詞定義 55 5.1.2剪動帶發展過程 55 5.1.3滾動顆粒與體積應變之分佈 56 5.1.4推估三角剪切帶破裂尖端之位置 56 5.2 邊坡滑動模擬成果 57 第六章 結論與建議 70 6.1 結論 70 6.2 建議 71 參考文獻 72 附錄A直剪實驗中剪動帶發展過程 74 附錄B 直剪實驗模擬剪動帶程式原始碼 105 附錄C 碩士學位考試口試委員提問與回覆表 138 | |
dc.language.iso | zh-TW | |
dc.title | 以PFC2D模擬砂土直剪實驗中之剪動帶及應用之研究 | zh_TW |
dc.title | Using PFC2D to Simulate the Shear Zone in a Direct Shear Test and its Application | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李錫堤,胡植慶,董家鈞,張國禎 | |
dc.subject.keyword | 非連續體力學,剪動帶,直剪實驗,PFC2D, | zh_TW |
dc.subject.keyword | distinct element method,shear zone,direct shear test,PFC2D, | en |
dc.relation.page | 140 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 42.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。