請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46214完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾淵如 | |
| dc.contributor.author | Dong-Feng Yeih | en |
| dc.contributor.author | 葉東峰 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:58:21Z | - |
| dc.date.available | 2011-09-09 | |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-29 | |
| dc.identifier.citation | 1. Akazawa H and Komuro I. Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 92: 1079-1088, 2003.
2. Alpert NR, Mulieri LA, and Litten RZ. Functional significance of altered myosin adenosine triphosphatase activity in enlarged hearts. Am J Cardiol 44: 946-953, 1979. 3. An D and Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 291: H1489-1506, 2006. 4. Aragno M, Mastrocola R, Medana C, Catalano MG, Vercellinatto I, Danni O, and Boccuzzi G. Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinology 147: 5967-5974, 2006. 5. Backs J and Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98: 15-24, 2006. 6. Bar-Shai M and Reznick AZ. Reactive nitrogen species induce nuclear factor-kappaB-mediated protein degradation in skeletal muscle cells. Free Radic Biol Med 40: 2112-2125, 2006. 7. Bar H, Kreuzer J, Cojoc A, and Jahn L. Upregulation of embryonic transcription factors in right ventricular hypertrophy. Basic Res Cardiol 98: 285-294, 2003. 8. Black BL and Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14: 167-196, 1998. 9. Blough ER, Rennie ER, Zhang F, and Reiser PJ. Enhanced electrophoretic separation and resolution of myosin heavy chains in mammalian and avian skeletal muscles. Anal Biochem 233: 31-35, 1996. 10. Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U, Iaina A, Knecht A, Weissgarten Y, Brunner D, Fainaru M, and Green MS. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 356: 1213-1218, 2000. 11. Cai L and Kang YJ. Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol 1: 181-193, 2001. 12. Cai L, Wang J, Li Y, Sun X, Wang L, Zhou Z, and Kang YJ. Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes 54: 1829-1837, 2005. 13. Cai L, Wang Y, Zhou G, Chen T, Song Y, Li X, and Kang YJ. Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 48: 1688-1697, 2006. 14. Campbell KB, Kirkpatrick RD, Knowlen GG, and Ringo JA. Late-systolic pumping properties of the left ventricle. Deviation from elastance-resistance behavior. Circ Res 66: 218-233, 1990. 15. Campbell KB, Ringo JA, Knowlen GG, Kirkpatrick RD, and Schmidt SL. Validation of optional elastance-resistance left ventricle pump models. Am J Physiol 251: H382-397, 1986. 16. Carbonell LF, Salom MG, Garcia-Estan J, Salazar FJ, Ubeda M, and Quesada T. Hemodynamic alterations in chronically conscious unrestrained diabetic rats. Am J Physiol 252: H900-905, 1987. 17. Carrea FP, Lesnefsky EJ, Repine JE, Shikes RH, and Horwitz LD. Reduction of canine myocardial infarct size by a diffusible reactive oxygen metabolite scavenger. Efficacy of dimethylthiourea given at the onset of reperfusion. Circ Res 68: 1652-1659, 1991. 18. Ceriello A, Quagliaro L, D'Amico M, Di Filippo C, Marfella R, Nappo F, Berrino L, Rossi F, and Giugliano D. Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat. Diabetes 51: 1076-1082, 2002. 19. Chang KC, Lo HM, and Tseng YZ. Systolic elastance and resistance in the regulation of cardiac pumping function in early streptozotocin-diabetic rats. Exp Biol Med (Maywood) 227: 251-259, 2002. 20. Cheng X, Xia Z, Leo JM, and Pang CC. The effect of N-acetylcysteine on cardiac contractility to dobutamine in rats with streptozotocin-induced diabetes. Eur J Pharmacol 519: 118-126, 2005. 21. Czubryt MP and Olson EN. Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. Recent Prog Horm Res 59: 105-124, 2004. 22. Dhalla NS, Liu X, Panagia V, and Takeda N. Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 40: 239-247, 1998. 23. Esberg LB and Ren J. Role of nitric oxide, tetrahydrobiopterin and peroxynitrite in glucose toxicity-associated contractile dysfunction in ventricular myocytes. Diabetologia 46: 1419-1427, 2003. 24. Fang ZY, Prins JB, and Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25: 543-567, 2004. 25. Feng B, Chen S, Chiu J, George B, and Chakrabarti S. Regulation of cardiomyocyte hypertrophy in diabetes at the transcriptional level. Am J Physiol Endocrinol Metab 294: E1119-1126, 2008. 26. Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, and Anversa P. Myocardial cell death in human diabetes. Circ Res 87: 1123-1132, 2000. 27. Garcia M, Moran A, Luisa Martin M, Barthelmebs M, and San Roman L. The nitric oxide synthesis/pathway mediates the inhibitory serotoninergic responses of the pressor effect elicited by sympathetic stimulation in diabetic pithed rats. Eur J Pharmacol 537: 126-134, 2006. 28. Ghosh S, Pulinilkunnil T, Yuen G, Kewalramani G, An D, Qi D, Abrahani A, and Rodrigues B. Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. Am J Physiol Heart Circ Physiol 289: H768-776, 2005. 29. Grumbach IM, Chen W, Mertens SA, and Harrison DG. A negative feedback mechanism involving nitric oxide and nuclear factor kappa-B modulates endothelial nitric oxide synthase transcription. J Mol Cell Cardiol 39: 595-603, 2005. 30. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC, Jr., and Sowers JR. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100: 1134-1146, 1999. 31. Gupta M, Sueblinvong V, Raman J, Jeevanandam V, and Gupta MP. Single-stranded DNA-binding proteins PURalpha and PURbeta bind to a purine-rich negative regulatory element of the alpha-myosin heavy chain gene and control transcriptional and translational regulation of the gene expression. Implications in the repression of alpha-myosin heavy chain during heart failure. J Biol Chem 278: 44935-44948, 2003. 32. How OJ, Aasum E, Kunnathu S, Severson DL, Myhre ES, and Larsen TS. Influence of substrate supply on cardiac efficiency, as measured by pressure-volume analysis in ex vivo mouse hearts. Am J Physiol Heart Circ Physiol 288: H2979-2985, 2005. 33. How OJ, Aasum E, Severson DL, Chan WY, Essop MF, and Larsen TS. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes 55: 466-473, 2006. 34. Hunter WC, Janicki JS, Weber KT, and Noordergraaf A. Systolic mechanical properties of the left ventricle. Effects of volume and contractile state. Circ Res 52: 319-327, 1983. 35. Ishihara H, Yokota M, Sobue T, and Saito H. Relation between ventriculoarterial coupling and myocardial energetics in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 23: 406-416, 1994. 36. Kajstura J, Fiordaliso F, Andreoli AM, Li B, Chimenti S, Medow MS, Limana F, Nadal-Ginard B, Leri A, and Anversa P. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 50: 1414-1424, 2001. 37. Kannel WB, Hjortland M, and Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34: 29-34, 1974. 38. Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS, and Kass DA. Effective arterial elastance as index of arterial vascular load in humans. Circulation 86: 513-521, 1992. 39. Kinugawa S, Tsutsui H, Hayashidani S, Ide T, Suematsu N, Satoh S, Utsumi H, and Takeshita A. Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 87: 392-398, 2000. 40. Kobayashi T, Matsumoto T, Ooishi K, and Kamata K. Differential expression of alpha2D-adrenoceptor and eNOS in aortas from early and later stages of diabetes in Goto-Kakizaki rats. Am J Physiol Heart Circ Physiol 287: H135-143, 2004. 41. Kubota T, Alexander J, Jr., Itaya R, Todaka K, Sugimachi M, Sunagawa K, Nose Y, and Takeshita A. Dynamic effects of carotid sinus baroreflex on ventriculoarterial coupling studied in anesthetized dogs. Circ Res 70: 1044-1053, 1992. 42. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685, 1970. 43. Lam CF, Peterson TE, Richardson DM, Croatt AJ, d'Uscio LV, Nath KA, and Katusic ZS. Increased blood flow causes coordinated upregulation of arterial eNOS and biosynthesis of tetrahydrobiopterin. Am J Physiol Heart Circ Physiol 290: H786-793, 2006. 44. Litwin SE, Raya TE, Anderson PG, Daugherty S, and Goldman S. Abnormal cardiac function in the streptozotocin-diabetic rat. Changes in active and passive properties of the left ventricle. J Clin Invest 86: 481-488, 1990. 45. Litwin SE, Raya TE, Daugherty S, and Goldman S. Peripheral circulatory control of cardiac output in diabetic rats. Am J Physiol 261: H836-842, 1991. 46. Mazumder PK, O'Neill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, Boudina S, and Abel ED. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 53: 2366-2374, 2004. 47. Meldrum DR, Shenkar R, Sheridan BC, Cain BS, Abraham E, and Harken AH. Hemorrhage activates myocardial NFkappaB and increases TNF-alpha in the heart. J Mol Cell Cardiol 29: 2849-2854, 1997. 48. Mercadier JJ, Lompre AM, Wisnewsky C, Samuel JL, Bercovici J, Swynghedauw B, and Schwartz K. Myosin isoenzyme changes in several models of rat cardiac hypertrophy. Circ Res 49: 525-532, 1981. 49. Molkentin JD and Markham BE. Myocyte-specific enhancer-binding factor (MEF-2) regulates alpha-cardiac myosin heavy chain gene expression in vitro and in vivo. J Biol Chem 268: 19512-19520, 1993. 50. Nagareddy PR, McNeill JH, and MacLeod KM. Chronic inhibition of inducible nitric oxide synthase ameliorates cardiovascular abnormalities in streptozotocin diabetic rats. Eur J Pharmacol 611: 53-59, 2009. 51. Nagareddy PR, Vasudevan H, and McNeill JH. Oral administration of sodium tungstate improves cardiac performance in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 83: 405-411, 2005. 52. Nagareddy PR, Xia Z, McNeill JH, and MacLeod KM. Increased expression of iNOS is associated with endothelial dysfunction and impaired pressor responsiveness in streptozotocin-induced diabetes. Am J Physiol Heart Circ Physiol 289: H2144-2152, 2005. 53. Natarajan A, Yamagishi H, Ahmad F, Li D, Roberts R, Matsuoka R, Hill S, and Srivastava D. Human eHAND, but not dHAND, is down-regulated in cardiomyopathies. J Mol Cell Cardiol 33: 1607-1614, 2001. 54. Nichols CG, Hanck DA, and Jewell BR. The Anrep effect: an intrinsic myocardial mechanism. Can J Physiol Pharmacol 66: 924-929, 1988. 55. Norby FL, Wold LE, Duan J, Hintz KK, and Ren J. IGF-I attenuates diabetes-induced cardiac contractile dysfunction in ventricular myocytes. Am J Physiol Endocrinol Metab 283: E658-666, 2002. 56. Pacher P and Szabo C. Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol 6: 136-141, 2006. 57. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, and Olson EN. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105: 1395-1406, 2000. 58. Pieper GM, Siebeneich W, Roza AM, Jordan M, and Adams MB. Chronic treatment in vivo with dimethylthiourea, a hydroxyl radical scavenger, prevents diabetes-induced endothelial dysfunction. J Cardiovasc Pharmacol 28: 741-745, 1996. 59. Pierce GN and Russell JC. Regulation of intracellular Ca2+ in the heart during diabetes. Cardiovasc Res 34: 41-47, 1997. 60. Poornima IG, Parikh P, and Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98: 596-605, 2006. 61. Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR, and Haider B. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 60: 884-899, 1977. 62. Rodrigues B, Xiang H, and McNeill JH. Effect of L-carnitine treatment on lipid metabolism and cardiac performance in chronically diabetic rats. Diabetes 37: 1358-1364, 1988. 63. Rutter MK, Parise H, Benjamin EJ, Levy D, Larson MG, Meigs JB, Nesto RW, Wilson PW, and Vasan RS. Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation 107: 448-454, 2003. 64. Schaffer SW, Tan BH, and Wilson GL. Development of a cardiomyopathy in a model of noninsulin-dependent diabetes. Am J Physiol 248: H179-185, 1985. 65. Shroff SG, Janicki JS, and Weber KT. Evidence and quantitation of left ventricular systolic resistance. Am J Physiol 249: H358-370, 1985. 66. Shroff SG and Motz W. Left ventricular systolic resistance in rats with hypertension and hypertrophy. Am J Physiol 257: H386-394, 1989. 67. Shroff SG, Naegelen D, and Clark WA. Relation between left ventricular systolic resistance and contractile rate processes. Am J Physiol 258: H381-394, 1990. 68. Smith JM, Paulson DJ, and Romano FD. Inhibition of nitric oxide synthase by L-NAME improves ventricular performance in streptozotocin-diabetic rats. J Mol Cell Cardiol 29: 2393-2402, 1997. 69. Suga H and Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 35: 117-126, 1974. 70. Sunagawa K, Maughan WL, Burkhoff D, and Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245: H773-780, 1983. 71. Sunagawa K, Sagawa K, and Maughan WL. Ventricular interaction with the loading system. Ann Biomed Eng 12: 163-189, 1984. 72. Sunagawa K, Yamada A, Senda Y, Kikuchi Y, Nakamura M, Shibahara T, and Nose Y. Estimation of the hydromotive source pressure from ejecting beats of the left ventricle. IEEE Trans Biomed Eng 27: 299-305, 1980. 73. Tada H, Oida K, Kutsumi Y, Shimada Y, Nakai T, and Miyabo S. Effects of probucol on impaired cardiac performance and lipid metabolism in streptozotocin-induced diabetic rats. J Cardiovasc Pharmacol 20: 179-186, 1992. 74. Takeuchi M, Igarashi Y, Tomimoto S, Odake M, Hayashi T, Tsukamoto T, Hata K, Takaoka H, and Fukuzaki H. Single-beat estimation of the slope of the end-systolic pressure-volume relation in the human left ventricle. Circulation 83: 202-212, 1991. 75. Talmadge RJ and Roy RR. Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms. J Appl Physiol 75: 2337-2340, 1993. 76. Tardiff JC, Hewett TE, Factor SM, Vikstrom KL, Robbins J, and Leinwand LA. Expression of the beta (slow)-isoform of MHC in the adult mouse heart causes dominant-negative functional effects. Am J Physiol Heart Circ Physiol 278: H412-419, 2000. 77. Thattaliyath BD, Livi CB, Steinhelper ME, Toney GM, and Firulli AB. HAND1 and HAND2 are expressed in the adult-rodent heart and are modulated during cardiac hypertrophy. Biochem Biophys Res Commun 297: 870-875, 2002. 78. Tomlinson KC, Gardiner SM, Hebden RA, and Bennett T. Functional consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacol Rev 44: 103-150, 1992. 79. Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, and Dillmann WH. Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 51: 1166-1171, 2002. 80. Vaartjes SR and Boom HB. Left ventricular internal resistance and unloaded ejection flow assessed from pressure-flow relations: a flow-clamp study on isolated rabbit hearts. Circ Res 60: 727-737, 1987. 81. Van den Bergh A, Flameng W, and Herijgers P. Type II diabetic mice exhibit contractile dysfunction but maintain cardiac output by favourable loading conditions. Eur J Heart Fail 8: 777-783, 2006. 82. Vega-Lopez S, Devaraj S, and Jialal I. Oxidative stress and antioxidant supplementation in the management of diabetic cardiovascular disease. J Investig Med 52: 24-32, 2004. 83. Vivekananthan DP, Penn MS, Sapp SK, Hsu A, and Topol EJ. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361: 2017-2023, 2003. 84. Wang J, Song Y, Elsherif L, Song Z, Zhou G, Prabhu SD, Saari JT, and Cai L. Cardiac metallothionein induction plays the major role in the prevention of diabetic cardiomyopathy by zinc supplementation. Circulation 113: 544-554, 2006. 85. Westermann D, Rutschow S, Jager S, Linderer A, Anker S, Riad A, Unger T, Schultheiss HP, Pauschinger M, and Tschope C. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of Angiotensin type 1 receptor antagonism. Diabetes 56: 641-646, 2007. 86. Wiernsperger NF. Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes Metab 29: 579-585, 2003. 87. Wold LE, Ceylan-Isik AF, Fang CX, Yang X, Li SY, Sreejayan N, Privratsky JR, and Ren J. Metallothionein alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of Ca2+ cycling proteins, NADPH oxidase, poly(ADP-Ribose) polymerase and myosin heavy chain isozyme. Free Radic Biol Med 40: 1419-1429, 2006. 88. Xia Z, Guo Z, Nagareddy PR, Yuen V, Yeung E, and McNeill JH. Antioxidant N-acetylcysteine restores myocardial Mn-SOD activity and attenuates myocardial dysfunction in diabetic rats. Eur J Pharmacol 544: 118-125, 2006. 89. Xu J, Gong NL, Bodi I, Aronow BJ, Backx PH, and Molkentin JD. Myocyte enhancer factors 2A and 2C induce dilated cardiomyopathy in transgenic mice. J Biol Chem 281: 9152-9162, 2006. 90. Yeih DF, Lin LY, Yeh HI, Lai YJ, Chiang FT, Tseng CD, Chu SH, and Tseng YZ. Temporal changes in cardiac force- and flow-generation capacity, loading conditions, and mechanical efficiency in streptozotocin-induced diabetic rats. Am J Physiol Heart Circ Physiol 294: H867-874, 2008. 91. Yeih DF, Yeh HI, Hsin HT, Lin LY, Chiang FT, Tseng CD, Chu SH, and Tseng YZ. Dimethylthiourea normalizes velocity-dependent, but not force-dependent, index of ventricular performance in diabetic rats: role of myosin heavy chain isozyme. Am J Physiol Heart Circ Physiol 297: H1411-1420, 2009. 92. Yoon YS, Uchida S, Masuo O, Cejna M, Park JS, Gwon HC, Kirchmair R, Bahlman F, Walter D, Curry C, Hanley A, Isner JM, and Losordo DW. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation 111: 2073-2085, 2005. 93. Zhang Y, Lee TS, Kolb EM, Sun K, Lu X, Sladek FM, Kassab GS, Garland T, Jr., and Shyy JY. AMP-activated protein kinase is involved in endothelial NO synthase activation in response to shear stress. Arterioscler Thromb Vasc Biol 26: 1281-1287, 2006. 94. Zhou G, Li X, Hein DW, Xiang X, Marshall JP, Prabhu SD, and Cai L. Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart. J Am Coll Cardiol 52: 655-666, 2008. 95. Ziegler D, Hanefeld M, Ruhnau KJ, Meissner HP, Lobisch M, Schutte K, and Gries FA. Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia 38: 1425-1433, 1995. 96. Ziegler D, Nowak H, Kempler P, Vargha P, and Low PA. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med 21: 114-121, 2004. 97. Zou MH, Shi C, and Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 109: 817-826, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46214 | - |
| dc.description.abstract | 糖尿病的盛行率驟增,糖尿病人的心臟血管合併症成為醫療和健康指標的重要課題。糖尿病會導致心肌收縮力受損,但潛在的詳細機制尚不明確。本論文主要的研究目標有三大部分。首先,我們研究的第一部分是以彈性-阻性左心室唧筒模型來探討糖尿病心肌病變的變化過程,從心肌力學的觀點,用力量依賴性(force-dependent)和速度依賴性(velocity-dependent)的心臟收縮指數來探討心臟收縮功能的時序變化。有鑑於心臟收縮功能之探討,其必需同時兼顧心肌載荷條件和心臟主動脈的交互作用,因此,我們研究糖尿病大鼠心臟收縮力的時序演變,並同時探討其中心臟的載荷條件、機械效率和心室動脈偶合(ventriculoarterial coupling)的時序變化。主要目的是以數學模式之心臟力學(即力量依賴性和速度依賴性的心臟收縮指數)來解釋在糖尿病心肌病變過程中,心臟收縮功能惡化之機械原因。另一方面,我們亦嘗試找出在糖尿病心肌病變過程中,造成失代償性心衰竭的心臟機械力學因素。藉以提供臨床醫師有效性的指標,來監控疾病治療的效果或新藥的開發。本博士論文的第二部份,我們的目的是評估抗氧化劑dimethylthiourea (DMTU) 對於糖尿病心肌病變之預防和治療作用。DMTU 是屬於一種強效的羥自由基清除劑。過去少數研究用它來探討糖尿病的動物模式中,抗氧化劑對於血管內皮細胞功能失調的療效。另有少數研究用以探討在心肌梗塞的動物模式中,抗氧化劑對於改善心臟收縮功能之療效。在初步的結果顯示DMTU確實可以改善心肌梗塞後的心衰竭。然而,目前尚未證實DMTU在治療糖尿病心肌病變的角色,我們透過糖尿病心肌病變的動物模式,試圖以彈性-阻性左心室唧筒模型來探討DMTU治療前後,糖尿病心臟收縮功能(即力量依賴性和速度依賴性心肌收縮力指數)的變化。此外,我們針對糖尿病鼠的心臟實驗,研究下游氧化還原敏感的轉錄因子,如心肌細胞增強因子2(myocyte enhancer factor-2, MEF- 2)、心臟自主神經系統、神經嵴衍生物(heart autonomic nervous system and neural crest derivatives, eHAND and dHAND),以及氧化還原壓力指標 (oxidative stress markers) 和肌球蛋白重鏈亞型轉換 (myosin heavy chain isoform switch)。本篇博士論文的第三部份,我們藉由糖尿病動物模式來探討L-NAME(NG-nitro-L-arginine methyl ester:一氧化氮生成酶抑制劑,L-NAME)對糖尿病心肌病變的影響和治療效果,以及其中可能的分子作用機轉。
在本論文的第一部分中,我們在鏈脲佐菌素(streptozotocin, STZ) 引發之糖尿病大鼠模式中,探討其心臟收縮力學、載荷條件和機械效率的時序變化。成年雄性Wistar大鼠隨機分為對照組和STZ誘導的糖尿病組。在注射STZ後的第8週,第16週和第22週,分別執行侵入性血流動力學研究。我們同時測量左心室壓力和主動脈血流,藉由曲線擬合技術,以彈性-阻性左心室唧筒模型來計算最大收縮力(maximal systolic elastance, Emax),最大理論血流量(maximal theoretical flow, Qmax); 另外,我們藉由單一射血心跳估計技術 (single beat estimation)來計算心室主動脈偶合(ventrioculoarterial coupling) 和機械效率 (mechanical efficiency)。實驗結果顯示,在糖尿病大鼠模式中,其最大收縮力在早期(第8週)就發生顯著下降且持續低瀰。另一方面,最大理論血流量則隨時間逐漸增加,藉以代償最大收縮力的下降。但在第22週後,最大理論血流量開始下降,同時伴隨心輸出量下降的變化。在糖尿病心肌病變過程中,有利的載荷條件(即前負荷增加,後負荷減少)有助於增強心搏量和最大理論血流量,以代償心臟收縮功能。然而心室主動脈偶合失調造成心臟機械效率減弱。我們的研究闡明,後負荷調整的最大理論血流量(Qmaxad)和心臟機械效率的下降,是糖尿病大鼠心臟功能惡化的兩項決定因素。 本論文的第二部分,在確立兩種心肌收縮力之力量依賴性和速度依賴性指數,其對糖尿病心肌病之心肌收縮力評估的有效性之後,我們再深入探討抗氧化劑DMTU對糖尿病心肌病變的動物模式中的預防和治療效果,以及其中可能的作用機轉。文獻報告指出,羥自由基和過氧化氫參與糖尿病之心肌病變的形成有關,但確切的機制仍然不明。我們在STZ誘導的糖尿病大鼠早期和慢性模式中,評估DMTU對於心臟收縮功能力量依賴指數和速度依賴指數的影響。在鏈脲佐菌素(STZ,55毫克/公斤)注射72個小時和8週後,糖尿病大鼠隨機分為 DMTU組(50毫克/公斤/天,腹腔注射)或生理食鹽水組分別治療 6週和12週。所有的老鼠均接受侵入性血流動力學的研究。我們同時測量左心室壓力和主動脈血流,藉由曲線擬合技術,以彈性-阻性左心室唧筒模型來計算最大收縮力和最大理論血流量。在糖尿病大鼠對照組中,標準化的最大收縮力(Emaxn)和後負荷調整的最大理論血流量(Qmaxad)兩個收縮力指標均顯著下降,同時伴隨有肌球蛋白重鏈亞型轉換 (myosin heavy chain isoform switch) 及其上游的轉錄因子 (transcription factor) 的改變,如心肌細胞增強因子-2(MEF-2)和心臟自主神經系統和神經嵴衍生物(dHAND 和eHAND)。在慢性糖尿病大鼠中,DMTU改變了心肌表達的MEF-2和eHAND蛋白量,以及減少了肌球蛋白重鏈亞型轉換,故明顯改善了Qmaxad。我們的研究顯示Qmaxad的改善可能與減少肌球蛋白重鏈亞型的轉換有關。DMTU 對於標準化的最大收縮力(Emaxn)影響效益不顯著。關於預防治療,在早期糖尿病大鼠中,DMTU顯著改善標準化的最大收縮力和後負荷調整的最大理論血流量。我們的研究結果顯示,抗氧化劑可預防糖尿病所造成的心肌病變問題。 在本論文的第三部分,經由先前發展的研究模式,我們利用經過驗證的兩種心肌收縮力指數(即左心室收縮力的力量依賴性和速度依賴性的指數)來闡述糖尿病心肌病的心肌收縮功能。我們探討L-NAME(NG -nitro-L-arginine methyl ester)對糖尿病心肌病變的影響。我們藉由糖尿病動物模式來探討L-NAME的治療效果,及其可能的分子作用機轉。結果顯示使用L-NAME八週後可以顯著地改善糖尿病鼠心臟收縮功能,即左心室收縮之力量依賴性和速度依賴性的指數。我們也發現L-NAME可以減少過氧化物和硝化物引發的自由基離子,改善一氧化氮生成酶之去偶合 (uncoupled nitric oxide synthase)之情形。我們又發現,L-NAME的治療可以減少核仁因子-κB (nuclear factor-κB, NFκB)的活化所引發的一連串發炎反應,和肌球蛋白重鏈亞型轉換。此實驗顯示在糖尿病動物模式下,一氧化氮生成酶之去偶合所引發的自由基離子是造成糖尿病心肌病變的主要原因。此實驗為藥理研究提供了一個未來的研究發展方向。 本博士論文結合心臟力學和分子醫學之技術,研究糖尿病心肌病變的演變過程,其中可能的致病機制。首先,在早期糖尿病心肌病變中,有利的心臟負荷條件促使最大理論血流量和心輸出量的提升,藉以代償在早期糖尿病心肌病變所發生的最大收縮力下降,使心臟收縮功能得以維持。然而,糖尿病心肌病變後期的最大理論血流量開始衰減,同時造成心搏量和心輸出量的下降,導致無法代償而造成顯著的心衰竭 (overt heart failure)。我們的研究結果顯示,最大理論血流量可以作為速度依賴性的心臟收縮功能之指數,可用於預測顯著的心衰竭的發生。此外,心臟機械效率的減少,而不是主動脈液壓能量轉移的減少,可能會引起不利的糖尿病心肌病變作用,而導致促成顯著心衰竭的主因之一。透過最大收縮力、最大理論血流量、心臟負荷條件和心臟機械效率的時序變化的研究結果,我們提供了一個研究方法,以了解糖尿病心肌病變的發病機制。文獻報告指出,肌球蛋白重鏈的異構體轉換可能造成後負荷調整的最大理論血流量的下降。這是值得深入研究,以闡明可能的分子機制,如胞外部分(即膠原蛋白)和幾何因素(即同心心室肥大或是離心心室肥大)。其次,我們證明 DMTU具有預防糖尿病心肌病變的療效。DMTU可使早期糖尿病心肌病變之最大收縮力和後負荷調整之最大理論血流量正常化。然而,在晚期糖尿病心肌病變中,DMTU僅能改善後負荷調整之最大理論血流量,但對於心臟最大收縮力則無顯著的影響。在慢性糖尿病大鼠心肌中,DMTU透過減少脂質過氧化以增強抗氧化能力,以調控心肌對氧化壓力反應的影響。至於對胰島素的分泌,DMTU並無增加的作用。DMTU明顯改善速度依賴性的心臟收縮力指數,而對力量依賴性的心臟收縮力指數則無顯著差異。在慢性糖尿病大鼠模式中,DMTU治療的優勢可能會涉及改善心肌特異性轉錄因子,如MEF-2和eHAND,以及逆轉肌球蛋白重鏈亞型轉換 (mysin heavy chain switch)。這些研究結果將提供另一個改善糖尿病心肌病變的治療方法。最後,本論文證實,過度的氧化壓力和氮化壓力,均會產生大量的自由基離子,引發實驗性糖尿病之心臟內收縮蛋白和酵素的功能失調,並引發與發炎反應相關的轉錄因子活化,因此,肌球蛋白重鏈亞型轉換和過氧亞硝酸鹽(peroxynitrite)成為糖尿病心肌病變的可能主因。 | zh_TW |
| dc.description.abstract | Diabetes mellitus may result in impaired cardiac contractility, but the underlying mechanical and molecular mechanisms remain unclear. There are three major aims of the present doctoral thesis. First, we aimed to investigate the temporal alternations in cardiac mechanics (i.e., force-dependent and velocity-dependent indices of cardiac contractility) in the evolution of diabetic cardiomyopathy (DCM) in terms of the elastance-resistance left ventricle (LV) pump model. In addition, we investigated the temporal changes in loading conditions, mechanical efficiency and ventriculoarterial coupling to elucidate the detailed cardiac mechanics attributable to decompensated heart failure in streptozotocin (STZ)-induced diabetic rats. Second, we aimed to evaluate the preventive and therapeutic effects of dimethylthiourea (DMTU), a potent hydroxyl radical scavenger, on force-dependent and velocity-dependent indices of cardiac contractility in both early and chronic stages of STZ-diabetic rats. We sought to do this in terms of force-dependent and velocity-dependent indices of myocardial contractility by using the elastance-resistance LV model. Furthermore, we planned to carry out experiments to examine downstream transcription factors, such as myocyte enhancer factor-2 (MEF-2) and heart autonomic nervous system and neural crest derivatives (dHAND and eHAND), activated by oxidative stress and markers of oxidative stress and the expression of isoforms of myosin heavy chain (MHC) in STZ-diabetic rat hearts. Third, we also evaluated the therapeutic efficacy of NG-nitro-L-arginine methyl ester (L-NAME), a non-specific inhibitor of nitric oxide synthases (NOS), in STZ-diabetic rats in terms of the elastance and resistance of left ventricle (LV). Furthermore, we planned to carry out experiments to investigate the underlying molecular mechanisms by examining the levels of nitrosative stress and oxidative stress markers, and its downstream signaling, i.e., nuclear factor-κB (NFκB), and coupling of NOS, as well as modulation of MHC isoform in STZ-diabetic rats.
In the first part, we aimed to investigate the temporal alterations in cardiac mechanics, loading conditions as well as mechanical efficiency in the evolution of systolic dysfunction in STZ-diabetic rats. Adult male Wistar rats were randomized into control and STZ-induced diabetic groups. Invasive hemodynamic studies were done at 8, 16, and 22 weeks post STZ injection. Maximal systolic elastance (Emax) and maximum theoretical flow (Qmax) were assessed by curve fitting techniques; ventriculoarterial coupling and mechanical efficiency by a single beat estimation technique. In contrast to early occurring and persistently depressed Emax, Qmax progressively increased with time, but was decreased at 22 wks post STZ injection, which temporally correlated with the changes in cardiac output. The favorable loading conditions enhanced stroke volume and Qmax, while ventriculoarterial uncoupling attenuated the cardiac mechanical efficiency in diabetic animals. The changes in Emax and Qmax are discordant during the progression of contractile dysfunction in the diabetic heart. Our present study showed that attenuated afterload-adjusted Qmax (Qmaxad) and afterload-adjusted LV weight normalized Qmax (Qmaxadn) and cardiac mechanical efficiency, occurring preceding overt systolic heart failure, are two major determinants of deteriorating cardiac performance in diabetic rats. After validation of the usefulness of both force-dependent and velocity-dependent indices of cardiac contractility in diabetic cardiomyopathy, we then aimed to investigate the preventive and therapeutic effects of DMTU on cardiac mechanics in STZ-diabetic rat hearts. It has been reported that hydroxyl radicals and hydrogen peroxide are involved in the pathogenesis of systolic dysfunction in diabetic rats, but the precise mechanisms and the effect of antioxidant therapy in diabetic subjects have not been elucidated. We aimed to evaluate the effects of DMTU on both force-dependent and velocity-dependent indices of cardiac contractility in STZ-induced early and chronic diabetic rats. Seventy-two hours and eight weeks after STZ (60 mg/kg) injection, diabetic rats were randomized to either DMTU (50 mg/kg/day, IP) or vehicle treatment for 6 and 12 weeks, respectively. All rats were then subjected to invasive hemodynamic studies. Again, Emax and Qmax were assessed by curve fitting techniques in terms of the elastance-resistance model. Both LV weight normalized Emax (Emaxn) and Qmaxad were depressed in diabetic rats, concomitant with altered MHC isoform composition and its upstream regulators, such as MEF-2 and heart autonomic nervous system and neural crest derivatives (eHAND and dHAND). In chronic diabetic rats, DMTU markedly attenuated the impairment in Qmaxad, and normalized the expression of MEF-2 and eHAND, and MHC isoform composition, but exerted an insignificant benefit on Emaxn. Regarding preventive treatment, DMTU significantly ameliorated both Emaxn and Qmaxad in early diabetic rats. We also checked blood glucose and insulin concentrations in controls and diabetic rats. The results showed that plasma insulin levels were significantly decreased after STZ injection and blood glucose levels were significantly increased in diabetic rats, but there were no significant differences after DMTU treatment in diabetic groups. In the second part, our current study shows that the advantage of DMTU in chronic diabetic rats might involve normalization of MEF-2 and eHAND, as well as reversal of MHC isoform switch. Finally, we evaluated the therapeutic efficacy of L-NAME, a non-specific inhibitor of NOS, in STZ-diabetic rats in terms of the elastance and resistance of left ventricle. Several reports have shown that nitrosative stress (NS) plays an essential role in diabetic cardiomyopathy. However, the precise mechanism by which the NS leads to compromised cardiac contractility has not been elucidated. We aimed to test the hypothesis that uncoupled endothelial NOS (eNOS) under excessive nitrosative stress and oxidative stress may enhance the translocation of NFκB and the resultant MHC proteolysis and isoform switch. Four weeks after STZ (60 mg/kg) or vehicle injection, male Wistar rats were randomized to receive treatment with either L-NAME (30 mg/kg/day in drinking water) or vehicle for another 8 weeks and then followed by invasive hemodynamic studies. Similarly, both Emax and Qmax were assessed by curve fitting techniques; the Ea by a single beat estimation technique. Analysis of low temperature sodium dodecyl sulfate polyacrylamide gel eletrophoresis (SDS-PAGE) of eNOS and Western blotting of NFκB-p65 in nuclear extract of the LV were done in the control, STZ and STZ+L-NAME groups. In parallel, catalase and oxidized to reduced glutathione ratio (GSSG/GSH ratio), and 3-nitrotyrosine (3-NT) in the LV were also measured. Both Emaxn and Qmaxadn were significantly depressed in 12-week diabetic rats, accompanied with nuclear translocation of NFκB-p65 and MHC isoform switch. L-NAME treatment not only attenuated the reductions in both Emaxn and Qmaxadn in diabetic rats, but also significantly modulated NFκB translocation, and MHC isoform switch analyzed by real time polymerase chain reaction (RT-PCR). We demonstrated that chronic inhibition of NOS reduced uncoupled eNOS and levels of NS and oxidative stress markers on one hand, and improved both in vivo force-dependent and velocity-dependent indices of cardiac contractility on the other hand. Our results suggested that NS might play an essential role in the pathogenesis of diabetic cardiomyopathy by mediating the activation of NFκB, and subsequent MHC isoform switch. In conclusion, the present doctoral thesis combined cardiac mechanics studies and molecular studies to demonstrate the possible mechanisms attributable to overt heart failure in the evolution of diabetic cardiomyopathy. First, at early stage of DCM, the enhanced Qmax and favorable loading conditions play complementary roles to persistently depressed Emax, and cardiac performance is then well-preserved in early period of diabetic rats. However, Qmax is attenuated at later stages, which is temporally correlated with the declines in stroke volume and cardiac output. The compensatory offset between Emax and Qmax would be lost and depressed cardiac performance would then ensue. Like systolic elastance, Qmax can serve as a velocity-dependent dimension of cardiac contractile function and can predict the occurrence of overt systolic dysfunction. In addition, cardiac mechanical efficiency, rather than aortic hydraulic energy transfer, is diminished preceding overt systolic heart failure, and may play a detrimental role in the evolution of contractile dysfunction in STZ-induced diabetic rats. By unraveling the temporal changes in Emax and Qmax, and loading conditions as well as cardiac mechanical efficiency, our present study provides a comprehensive understanding of the pathogenesis of contractile dysfunction in diabetic rat heart. It has been reported that isoform switch of MHC might play a role in depressed Qmaxad, it warrants further study to elucidate the possible molecular mechanisms attributable to attenuated Qmaxad, such as extracellular component (i.e., collagen), and geometric factors (i.e., concentric ventricular hypertrophy). Second, we demonstrated that DMTU normalizes Emaxn and Qmaxad in early stage of DCM, but normalizes only Qmaxad in late stage of diabetic cardiomyopathy. DMTU, by reducing lipid peroxidation and enhancing antioxidant capacity, has disparate effects on modulation of the myocardial response to increased oxidative stress in chronic diabetic rat hearts, with a dramatic restoration of velocity-dependent index of cardiac contractility but an insignificant benefit on force-dependent index. The advantages of DMTU treatment might involve normalization of cardiac-specific transcription factors, such as MEF-2 and eHAND, as well as the reversal of MHC isoform switch in chronic diabetic rats. These observations suggest a way towards an additional therapeutic approach to systolic dysfunction in diabetes. Finally, we showed that chronic inhibition of NOS may ameliorate both force-dependent and velocity-dependent indices of cardiac performance in diabetic rats. The underlying molecular mechanisms of L-NAME treatment might be mediated through attenuation of uncoupled eNOS and nitrosative/oxidative stress, and NFκB translocation from the cytosol to the nucleus, and subsequent reversal of MHC isoform switch. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:58:21Z (GMT). No. of bitstreams: 1 ntu-99-D91441004-1.pdf: 8514762 bytes, checksum: 519454770f14cbfcb9bebc075698e5b9 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Certification……………………………………………………………………………1
Acknowledgments…………………………………………………………………….2 Abstract (in English)………………………………………………………………6-13 Abstract (in Chinese)……………………………………………………………14-20 Chapter 1 Introduction…………………………………………………..……21-33 1.1 Mechanisms of contractile dysfunction in diabetes……………………21-23 1.2 Oxidative stress, nitrosative stress and diabetic cardiomyopathy………23-26 1.3 The time-varying elastance model and the elastance-resistance model…26-30 1.4 Roles of uncoupled nitric oxide synthase and nuclear factor κB in diabetic cardiomyopathy…………………………………………………………30-33 1.5 Specific aims in the current study………………………………………33 Chapter 2 Methods and materials………………………………………………34-52 2.1 Temporal alternations in cardiac contractility in diabetic rats…………34-39 2.2 Cardiac loading conditions, ventriculoarterial coupling and mechanical efficiency in diabetic rats………………………………………………39-42 2.3 Effects of dimethylthiourea on cardiac contractility in diabetic rats……42-43 2.4 Effects of dimethylthiourea on cardiac transcription factors and myosin heavy chain isoform switch……………………………………………43-47 2.5 Effects of nitric oxide synthase inhibitor on cardiac performance in diabetic rats………………………………………………………………………47-48 2.6 Effects of nitric oxide synthase inhibitor on nuclear factor κB activation and myosin heavy chain isoform switch……………………………………49-52 Chapter 3 Results……………………………………………………………….53-69 3.1 Temporal alternations in cardiac contractility in diabetic rats……53-56 3.2 Cardiac loading conditions, ventriculoarterial coupling and mechanical efficiency in diabetic rats………………………………..………………56-58 3.3 Effects of dimethylthiourea on cardiac contractility in diabetic rats……58-62 3.4 Effects of dimethylthiourea on cardiac transcription factors and myosin heavy chain isoform switch……………………………………………62-64 3.5 Effects of nitric oxide synthase inhibitor on cardiac performance in diabetic rats………………………………………………………………………64-66 3.6 Effects of nitric oxide synthase inhibitor on nuclear factor-κB activation and myosin heavy chain isoform switch……………………………………67-69 Chapter 4 Discussion…………………………………………………………70-89 Chapter 5 Summary and future prospective……………………………………90-97 References…………………………………………………………………….…98-106 Figures and tables………………………………………………………107-133 Appendix I. Publications………………………………………………………134 Appendix II. Abbreviations…………………………………………… 135-136 | |
| dc.language.iso | en | |
| dc.subject | 氧化還原敏感的轉錄因子 | zh_TW |
| dc.subject | 糖尿病心肌病變 | zh_TW |
| dc.subject | 心衰竭 | zh_TW |
| dc.subject | 收縮功能 | zh_TW |
| dc.subject | 氧化還原壓力 | zh_TW |
| dc.subject | 異構體轉換 | zh_TW |
| dc.subject | oxidative-sensitive transcription factors | en |
| dc.subject | diabetic cardiomyopathy | en |
| dc.subject | heart failure | en |
| dc.subject | contractile function | en |
| dc.subject | oxidative stress | en |
| dc.subject | isoform switch | en |
| dc.title | 糖尿病心肌病變之演變中,心臟收縮力之力量依賴性和速度依賴性之指數的時序變化: 氧化壓力和氮化壓力與肌球蛋白重鏈亞型轉換和氧化敏感的轉錄因子之角色 | zh_TW |
| dc.title | Temporal alternations in force-dependent and velocity-dependent indices of cardiac contractility in the evolution of diabetic cardiomyopathy: roles of oxidative stress, nitrosative stress, myosin heavy chain isoform switch and oxidative-sensitive transcription factors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 江正文,曾春典,江福田,駱惠銘 | |
| dc.subject.keyword | 糖尿病心肌病變,心衰竭,收縮功能,氧化還原壓力,異構體轉換,氧化還原敏感的轉錄因子, | zh_TW |
| dc.subject.keyword | diabetic cardiomyopathy,heart failure,contractile function,oxidative stress,isoform switch,oxidative-sensitive transcription factors, | en |
| dc.relation.page | 136 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 8.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
