請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46211
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王兆麟(Jaw-Lin Wang) | |
dc.contributor.author | Ruei-An Wang | en |
dc.contributor.author | 王瑞安 | zh_TW |
dc.date.accessioned | 2021-06-15T04:58:14Z | - |
dc.date.available | 2010-08-03 | |
dc.date.copyright | 2010-08-03 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-28 | |
dc.identifier.citation | 1. C. M. Schnider`, Dye. Clinical Ocular Pharmacology`, 4th ed.`, Edited by J. D. Bartlett`, S. D. Jaanus`, Butterworth Heinemann`, Woburn`, 2001`, pp.349-357
2. Brodin H. Paths of nutrition in articular cartilage and intervertebral discs. Acta Orthop Scand 1955;24:177-83. 3. Chiu EJ, Newitt DC, Segal MR, et al. Magnetic resonance imaging measurement of relaxation and water diffusion in the human lumbar intervertebral disc under compression in vitro. Spine (Phila Pa 1976) 2001;26:E437-44. 4. Cohen MD. Hyaluronic acid treatment (viscosupplementation) for OA of the knee. Bull Rheum Dis 1998;47:4-7. 5. Deal CL, Moskowitz RW. Nutraceuticals as therapeutic agents in osteoarthritis. The role of glucosamine, chondroitin sulfate, and collagen hydrolysate. Rheum Dis Clin North Am 1999;25:379-95. 6. Drew SC, Silva P, Crozier S, et al. A diffusion and T2 relaxation MRI study of the ovine lumbar intervertebral disc under compression in vitro. Phys Med Biol 2004;49:3585-92. 7. Ferguson SJ, Ito K, Nolte LP. Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 2004;37:213-21. 8. Gantenbein B, Grunhagen T, Lee CR, et al. An in vitro organ culturing system for intervertebral disc explants with vertebral endplates: a feasibility study with ovine caudal discs. Spine (Phila Pa 1976) 2006;31:2665-73. 9. Gu WY, Mao XG, Foster RJ, et al. The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content. Spine (Phila Pa 1976) 1999;24:2449-55. 10. Gu WY, Yao H, Huang CY, et al. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. J Biomech 2003;36:593-8. 11. Jackson A, Gu W. Transport Properties of Cartilaginous Tissues. Curr Rheumatol Rev 2009;5:40-50. 12. Jackson A, Yao H, Brown MD, et al. Anisotropic ion diffusivity in intervertebral disc: an electrical conductivity approach. Spine (Phila Pa 1976) 2006;31:2783-9. 13. Johnstone B, Urban JP, Roberts S, et al. The fluid content of the human intervertebral disc. Comparison between fluid content and swelling pressure profiles of discs removed at surgery and those taken postmortem. Spine (Phila Pa 1976) 1992;17:412-6. 14. Katz MM, Hargens AR, Garfin SR. Intervertebral disc nutrition. Diffusion versus convection. Clin Orthop Relat Res 1986:243-5. 15. Knecht S, Luechinger R, Boesiger P, et al. MRI-based inverse finite element approach for the mechanical assessment of patellar articular cartilage from static compression test. Biomed Tech (Berl) 2008;53:285-91. 16. Kraemer J, Kolditz D, Gowin R. Water and electrolyte content of human intervertebral discs under variable load. Spine (Phila Pa 1976) 1985;10:69-71. 17. Leddy HA, Guilak F. Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann Biomed Eng 2003;31:753-60. 18. Leddy HA, Haider MA, Guilak F. Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching. Biophys J 2006;91:311-6. 19. O'Hare D, Winlove CP, Parker KH. Electrochemical method for direct measurement of oxygen concentration and diffusivity in the intervertebral disc: electrochemical characterization and tissue-sensor interactions. J Biomed Eng 1991;13:304-12. 20. Ogata K, Whiteside LA. 1980 Volvo award winner in basic science. Nutritional pathways of the intervertebral disc. An experimental study using hydrogen washout technique. Spine (Phila Pa 1976) 1981;6:211-6. 21. Panagiotacopulos ND, Pope MH, Krag MH, et al. Water content in human intervertebral discs. Part I. Measurement by magnetic resonance imaging. Spine (Phila Pa 1976) 1987;12:912-7. 22. Quinn TM, Morel V, Meister JJ. Static compression of articular cartilage can reduce solute diffusivity and partitioning: implications for the chondrocyte biological response. J Biomech 2001;34:1463-9. 23. Rajasekaran S, Babu JN, Arun R, et al. ISSLS prize winner: A study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine (Phila Pa 1976) 2004;29:2654-67. 24. Rajasekaran S, Naresh-Babu J, Murugan S. Review of postcontrast MRI studies on diffusion of human lumbar discs. J Magn Reson Imaging 2007;25:410-8. 25. Rauck RL, Gargiulo CA, Ruoff GE, et al. Chronic low back pain: new perspectives and treatment guidelines for primary care: Part I. Manag Care Interface 1998;11:72-7, 82. 26. Roughley PJ. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine (Phila Pa 1976) 2004;29:2691-9. 27. Roughley PJ, Alini M, Antoniou J. The role of proteoglycans in aging, degeneration and repair of the intervertebral disc. Biochem Soc Trans 2002;30:869-74. 28. Singh K, Masuda K, Thonar EJ, et al. Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc. Spine (Phila Pa 1976) 2009;34:10-6. 29. Swartz MA, Fleury ME. Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 2007;9:229-56. 30. Travascio F, Gu WY. Anisotropic diffusive transport in annulus fibrosus: experimental determination of the diffusion tensor by FRAP technique. Ann Biomed Eng 2007;35:1739-48. 31. Travascio F, Zhao W, Gu WY. Characterization of anisotropic diffusion tensor of solute in tissue by video-FRAP imaging technique. Ann Biomed Eng 2009;37:813-23. 32. Urban JP, Holm S, Maroudas A. Diffusion of small solutes into the intervertebral disc: as in vivo study. Biorheology 1978;15:203-21. 33. Urban JP, Holm S, Maroudas A, et al. Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop Relat Res 1982:296-302. 34. Urban JPG, Roberts S, Ralphs JR. The nucleus of the intervertebral disc from development to degeneration. American Zoologist 2000;40:53-61. 35. Yao H, Gu WY. Physical signals and solute transport in human intervertebral disc during compressive stress relaxation: 3D finite element analysis. Biorheology 2006;43:323-35. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46211 | - |
dc.description.abstract | 中文摘要
背景簡介:椎間盤為人體最大之無血管軟骨組織。椎間盤的退化會導致椎終板鈣化與椎間核纖維化,兩者皆會影響椎間盤內的分子運輸,溶質運輸的減少將引致間盤退化的惡性循環。研究椎間盤營養交換於擴散作用(Diffusion)與日常動作對椎間盤產生的對流作用(Convection)方式,將有助於了解與治療退化性椎間盤。 目的:階段一、建立一個可用以研究椎間盤分子運輸的螢光攝影系統。階段二、找出椎間盤內分子量對擴散效能的影響。 材料與方法:發展出一個合乎成本效益的螢光巨觀攝影儀器用以偵測椎間盤內的多醣分子。此儀器包含了一台移除紅外線截止鏡的數位相機(Canon 450D),以及兩組用以偵測紅色與綠色螢光試劑的光源與濾鏡。並將所有元件組裝於31.5cm x 26.5cm x 55.5cm的暗房內。實驗用到的三組注射液使用了螢光素鈉(FS, 0.4 kDa, F6377, Sigma-Aldrich, Saint Louis, Missouri, USA)、四甲基異硫氰酸羅丹明-多醣共軛物(TRITC-dextran, 4.4 kDa, T1037, Sigma-Aldrich)、異硫氰酸螢光素-多醣共軛物(FITC-dextran, 40 kDa, FD40S, Sigma-Aldrich)三種螢光試劑。激發光源以及偵測用的濾鏡可適度調整用來偵測此三種螢光試劑的放射光。 實驗中調配了三種注射液。 A. FS (M=0.4 kDa, 100μM) B. FS (M=0.4 kDa, 100μM) + TRITC (M=4.4 kDa, 100μM) C. TRITC (M=4.4 kDa, 100μM) + FITC-Dextran (M=40 kDa, 100μM) 以六月齡豬隻的椎間盤單元72個,依上述注射溶液分為三大組別(8個,32個,32個),組別一為Intact組,在組別二與組別三中則依外加載荷細分成四小組(Intact組、1小時420 N靜態載荷組、0.5小時190 N~590 N頻率5Hz循環載荷組、1小時190 N~590 N頻率5Hz循環載荷組),各小組數量皆為8個,試樣照分類之組別以22號針經其腹側各打入0.25 ml注射液並施加各類載荷。完成之試樣以-20 ℃冷凍固定溶液的溶質分子,之後將試樣包埋作縱向切片,並以自製之螢光攝影平台拍攝相對應之螢光影像。後續以擴散面積DIArea、橫向擴散長度Lx,r.m.s、縱向擴散長度Ly,r.m.s、椎終板穿透指標DIEP等四項指標分析各個螢光影像。 結果:階段一中成功的建立一個合乎成本效益的螢光影像系統。在高感光度(ISO-1600)長時間曝光下,高溫將導致影像的熱燥訊。在組裝冷卻系統後,可將CMOS的工作溫度從 30 ℃降至5℃,並成功的減少熱燥訊(雜訊比率從5.5%降至0.2%)。本系統可以藉由更換濾鏡與相機鏡頭適度的調整光波段與對焦距離。階段二中,無載荷下的擴散面積(diffusion area)與靜態載荷、循環載荷引致的對流面積(convection area)在FS中有類似結果。FS的對流面積不受中分子大小溶質(如:TRITC)的存在影響。然而,TRITC的對流面積則會受到大分子溶質(如:FITC)的鉗制。1時靜態載荷與0.5小時循環載荷使FITC的運輸增加而TRITC亦如此。1小時靜態載荷與0.5小時循環載荷對大分子運輸有相似的效果。1小時循環載荷的運輸面積則比0.5小時的循環載荷來的小。 結論:本實驗中發現小分子(0.4 kDa)與中分子(4.4 kDa)溶質並不受外力引致的對流所影響。然而外加載荷引致的對流卻會影響大分子(40 kDa)的運輸。大分子對椎間盤內部孔洞(包含椎終板與椎間環)引致的阻塞效應鉗制住了中分子,然而並不確定是否對小分子溶質有影響。更多的現象,如螢光試劑於內部的對流機制以及更長時間靜態或循環載荷試驗的量值影響,則可再做進一步探討。 | zh_TW |
dc.description.abstract | Abstract
Background: Intervertebral Disc (IVD) is the biggest avascular cartilage in human body. The degeneration of disc would results in the calcification of endplate and fiborsis of nucleus pulposus; which both affect the molecular transportation within disc. The degradation of solute transportation would induce a vicious circle of disc degeneration. The study of diffusion of nutrition exchange in IVD and convection due to daily activities can be helpful for the understanding of disc degeneration and treatment. Objective: Step I: Set up a fluorescent imaging system for the study of molecular transport within disc. Step II: Find the effect of molecular weight on the diffusion capability within the disc. Methods: A cost effective fluorescence macroscopic photographic apparatus to detect the dextran molecule within the disc matrix was developed. This apparatus includes one digital camera (Canon 450D) with removal of IR-Cut filter, and two paired light sources and filters to detect “red” and “green” fluorescent reagent. All these components are fitted into a box of 31.5cm x 26.5cm x 55.5cm. Three fluorescent reagents, Fluorescein sodium salt (FS, 0.4 kDa, F6377, Sigma-Aldrich, Saint Louis, Missouri, USA), Tetramethylrhodamine isothiocyanate–dextran (TRITC-dextran, 4.4 kDa, T1037, Sigma-Aldrich), Fluorescein isothiocyanate–dextran (FITC-dextran, 40 kDa, FD40S, Sigma-Aldrich) were used for three groups of solution. The light source for excitation and filter for detection are fine tuned for the detection of emission of these three fluorescent reagents. Three groups of solutions were formulated. The solution A includes the FS (0.4 kDa, 100μM) only. The solution B includes both FS (0.4 kDa, 100μM) and TRITC-dextran (4.4 kDa, 100μM), and the solution C includes both TRITC-dextran (4.4 kDa, 100μM) and FITC-dextran (40 kDa, 100μM). A 0.25 ml solute was injected into the center of disc before the loading. Four types of loading, which include no load, 1 hr 420 N creep loading, 0.5 hr, 5 Hz, 190 N to 590 N, and 1 hr, 5 Hz, 190 N to 590 N peak-to-peak fatigue loading were applied for these three groups of solutions. After the loading, the discs were cryopreserved. All specimens were sagittally cut in half using a diamond blade saw. The fluorescent images of specimens were photographed using the developed fluorescent photographic system. For the solution A, green light and filter is used to detect FS. For the solution B and C, the “green” and “red” lights and filters were used to differentiate the FS from TRITC, and FITC from TRICT. After the subtraction of disc and vertebrae images, the fluorophore was identified by the gray scale above 20. The area covered by the fluorophore was calculated to represent the penetration of solutions. Results: Step I. We successfully build a cost effective fluorescent imaging system. The noises due to high temperature are found under long-time exposure when using high ISO mode (ISO-1600). After assembling the cooling system, the working temperature of CMOS decreases from 30 ℃ to 5℃, and the hot noise is reduced (noise ratio: reduced from 5.5% to 0.2%). This system is capable for adjusting band wavelengths and focal length by changing the filters and lens. Step II. The diffusion area (no load) and convention area (creep and fatigue) of FS were similar. The convection area of FS is not affected by the existence of medium size solute i.e., the TRITC. However, the convection area of TRITC was entangled by the existence of larger solute, i.e., the FITC. The 1 hr creep and 0.5 hr fatigue loading increased the transport of FITC, hence the TRITC as well. The effect of 1 hr creep and 0.5 hr fatigue on the large solute transport was similar. The transport area of solute of 1 hr fatigue loading is smaller than the one of 0.5 hr fatigue loading. Conclusion: In this study, we found that the small (0.4 kDa) and medium (4.4 kDa) solute is not affected by the load induced convection. However, the external loading induced convention does affect the transport of large solute (40 kDa). The large molecule induces a steric hindrance within the disc space (including both endplate and anulus fibrosus) hence entangles the medium molecule. However, it is not sure if the large molecule would affect the transport of small one. Few more phenomena should be studied in the near future, for example, the inward flow mechanism of the fluorescent solute and the quantitative effect of longer creep or fatigue loading. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:58:14Z (GMT). No. of bitstreams: 1 ntu-99-R97548019-1.pdf: 2103716 bytes, checksum: 36f02e5a4656c8c3d6bc0ecc1ea5d1ee (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii Abstract iv 第一章 前言 1 1.1 椎間盤的生理構造與功能 1 1.2 椎間盤退化(Intervertebral Disc Degeneration) 2 1.3 椎間盤的新陳代謝 2 1.4 研究動機和目的 3 第二章 材料與方法 5 2.1 實驗簡介 5 2.2 實驗儀器 5 2.2.1 連續式衝擊測試平台(Continuous Impact Testing Apparatus) 5 2.2.2 往復式衝擊模組(Cyclic Loading) 6 2.2.3 鑽石切割機 7 2.2.4 石膏包埋盒 7 2.2.5 螢光攝影平台 8 2.3 實驗階段 10 2.3.1 試樣準備 10 2.3.2 藥品簡介 11 2.3.3 藥品準備 11 2.3.4 實驗流程 12 2.3.5 影像校正流程 14 2.3.6 影像分析流程 17 第三章 實驗結果 19 3.1 量測儀器設計結果 19 3.1.1 光源設計模擬 19 3.1.2 相機冷卻效果 22 3.1.3 量測儀器比較 23 3.2 影像切面結果 24 3.2.1 擴散影像圖 24 3.2.2 擴散影像比較 24 3.3 影像數值分析結果 26 3.3.1 擴散面積DIArea 26 3.3.2 橫向擴散長度Lx,r.m.s 28 3.3.3 縱向擴散長度Ly,r.m.s 29 3.3.4 椎終板穿透指標DIEP 31 第四章 综合討論 33 4.1椎間盤擴散模型討論 33 4.1.1椎間盤擴散模型 33 4.1.2擴散模型討論 33 4.2實驗結果討論 34 4.3 實驗限制 35 第五章 結論與未來展望 37 5.1 結論 37 5.2 未來展望 38 第六章 參考文獻 39 | |
dc.language.iso | zh-TW | |
dc.title | 分子量與外力載荷對分子在椎間盤中擴散效能的影響 | zh_TW |
dc.title | Effect of Molecular Weight and External Loading on Particle Diffusion within Intervertebral Disc:
An in Vitro Porcine Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 趙本秀(Pen-Hsiu Chao),蕭仲凱(Hsiao Jong-Kai),楊台鴻(Tai-Horng Young) | |
dc.subject.keyword | 螢光,擴散,對流,外力載荷,椎間盤新陳代謝, | zh_TW |
dc.subject.keyword | fluorescence,diffusion,convection,external loading,IVD metabolism, | en |
dc.relation.page | 42 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 2.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。