Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46207
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛煥彰
dc.contributor.authorYu-Chen Changen
dc.contributor.author張育晨zh_TW
dc.date.accessioned2021-06-15T04:58:04Z-
dc.date.available2010-08-02
dc.date.copyright2010-08-02
dc.date.issued2010
dc.date.submitted2010-07-28
dc.identifier.citationAoi, T. (1955). On spheroidal functions. Journal of the physical Society of Japan, 10, 130.
Balsara, N. P., and Subramanian, R. S. (1987). The influence of buoyancy on thermophoretic deposition of aerosol particles in a horizontal tube. Journal of Colloid and Interface Science, 118, 3.
Basset, A. B. (1961). In: A treatise on hydrodynamics, vol 2, Dover, New York.
Brenner, H. (1964). The Stokes resistance of a slightly deformed sphere. Chemical Engineering Science, 19, 519.
Brock, J. R. (1962). On the theory of thermal forces acting on aerosol particles. Journal of Colloid Science, 17, 768.
Cercignani, C. (2000). Rarefied gas dynamics: from basic concepts to actual calculations. Cambridge: Cambridge University Press.
Dahneke, B. E. (1973). Slip correction factors for nonspherical bodies-III The form of the general law. Journal of Aerosol Science, 4, 163.
Dassios, G., Hadjinicolaou, M., and Payatakes, A. C. (1994). Generalized eigenfunctions and complete semiseparable solutions for Stokes flow in spheroidal coordinates. Quarterly of Applied Mathematics, 52, 157.
Dassios, G., Hadjinicolaou, M., Coutelieris, F. A., and Payatakes, A. C. (1995). Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions. International Journal of Engineering Science, 10, 1465.
Davis, E. J., and Schweiger, G. (2002). The Airborne Microparticle. Berlin: Springer.
Deo, S., and Datta, S. (2002). Flow past a prolate spheroid. Indian Journal of Pure and Applied Mathematics, 33, 903.
Derjaguin, B. V., Rabinovich, Ya. I., Storozhilova, A. I., and Shcherbina, G. I. (1976). Measurement of the coefficient of thermal slip of gases and the thermophoresis velocity of large-size aerosol particles. Journal of Colloid and Interface Science, 57, 451.
Friedlander, S. K. (1977). Smoke, Dust and Haze. New York: Wiley.
Ganatos, P., Weinbaum, S., and Pfeffer, R. (1980). A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. perpendicular motion. Journal of Fluid Mechanics, 99, 739.
Gluckman, M. J., Pfeffer, R., and Weinbaum, S. (1971). A new technique for treating multi-particle slow viscous flow: axisymmetric flow past spheres and spheroids. Journal of Fluid Mechanics, 50, 705.
Happel, J., and Brenner, H. (1983). Low Reynolds Number Hydrodynamics. Dordrecht, The Netherlands: Nijhoff.
Hornbeck, R. W. (1975). Numerical Methods. Quantum Publishers, New York.
Hu, C. M., and Zwanzig, R. (1974). Rotational friction coefficients for spheroids with slipping boundary-condition. Journal of Chemical Physics, 60, 4354.
Ivchenko, I. N., Loyalka, S. K., and Tompson, R. V. (2007). Analytical Methods for Problems of Molecular Transport. Berlin: Springer.
Keh, H. J., and Chang, Y. C. (2006). Thermophoresis of an Aerosol Sphere Perpendicular to Two Plane Walls. AIChE Journal, 52, 1690.
Keh, H. J., and Chen, S. H. (1995). Particle interactions in thermophoresis. Chemical Engineering Science, 50, 3395.
Keh, H. J., and Chen, S. H. (1996). Thermophoresis of an arbitrary three-dimensional array of N Interacting arbitrary spheres. Journal of Aerosol Science, 27, 1035.
Keh, H. J., and Huang, C. H. (2004). Slow motion of axisymmetric slip particles along their axes of revolution. International Journal of Engineering Science, 42, 1621.
Keh, H. J., and Li, W. J. (1997). A study of bipolar spheroids in an electrolytic cell. Journal of The Electrochemical Society, 144, 1323.
Keh, H. J., and Ou, C. L. (2004). Thermophoresis of aerosol spheroids. Aerosol Science and Technology, 38, 675.
Keh, H. J., and Tseng, C. H. (1994). Slow motion of an arbitrary axisymmetric body along its axis of revolution and normal to a plane surface. International Journal of Multiphase Flow, 20, 185.
Keh, H. J., and Tu, H. J. (2001). Thermophoresis and photophoresis of cylindrical particles. Colloids and Surfaces A, 176, 213.
Kennard, E. H. (1938). Kinetic Theory of Gases. New York: McGraw-Hill.
Laucks, M. L., Roll, G., Schweiger, G., and Davis, E. J. (2000). Physical and chemical (Raman) characterization of bioaerosols: Pollen. Journal of Aerosol Science, 31, 307.
Leong, K. H. (1984). Thermophoresis and diffusiophoresis of large aerosol particles of different shapes. Journal of Aerosol Science, 15, 511.
Li, W., and Davis, E. J. (1995). Measurement of the thermophoretic force by electrodynamic levitation: Microspheres in air. Journal of Aerosol Science, 26, 1063.
Lienhard, J. H. (1987). A Heat Transfer Textbook (2nd edition). Englewood Cliffs, New Jersey: Prentice-Hall.
Maxwell, J. C. (1879). On stresses in rarified gases arising from inequalities of temperature. Philosophical Transactions of the Royal Society, 170, 231.
Messerer, A., Niessner, R., and Pöschl, U. (2004). Miniature pipe bundle heat exchanger for thermophoretic deposition of ultrafine soot aerosol particles at high flow velocities. Aerosol Science and Technology, 38, 456.
Montassier, N., Boulaud, D., and Renoux, A. (1991). Experimental study of thermophoretic particle deposition in laminar tube flow. Journal of Aerosol Science, 22, 677.
Morrison, F. A. (1970). Electrophoresis of a particle of arbitrary shape. Journal of Colloid and Interface Science, 34, 210.
Oberbeck, A., and Reine, J. (1876). Uber stationare flussigkeitsbewegungen mit berucksichtigung der inner rei-bung. Journal für die Reine und Angewandte Mathematik, 81, 62.
O'Brien, V. (1968). Form factors for deformed spheroids in Stokes flow. AIChE Journal, 14, 870.
Palaniappan, D. (1994). Creeping flow about a slightly deformed sphere. ZAMP, 45, 832.
Payne, L. E., and Pell, W. H. (1960). The Stokes flow problem for a class of axially symmetric bodies. Journal of Fluid Mechanics, 7, 529.
Ramkissoon, H. (1997). Slip flow past an approximate spheroid. Acta Mechanica, 123, 227.
Sampson, R. A. (1891). On Stokes’s current function. Philosophical Transactions of the Royal Society A, 182, 449.
Sasse, A. G. B. M., Nazaroff, W. W., and Gadgil, A. J. (1994). Particle filter based on thermophoretic deposition from nature convection flow. Aerosol Science and Technology, 20, 227.
Schadt, C. F., and Cadle, R. D. (1961). Thermal forces on aerosol particles. Journal of Physical Chemistry, 65, 1689.
Senchenko, S., and Keh, H. J. (2006). Slipping Stokes flow around a slightly deformed sphere. Physics of Fluids, 18, 088104.
Senchenko, S., and Keh, H. J. (2007). Thermophoresis of a slightly deformed aerosol sphere. Physics of Fluids, 19, 033102.
Sharipov, F., and Kalempa, D. (2003). Velocity slip and temperature jump coefficients for gaseous mixtures. I. Viscous slip coefficient. Physics of Fluids, 15, 1800.
Sone, Y. (2002). Kinetic Theory and Fluid Dynamics. Boston: Birkhauser.
Talbot, L., Cheng, R. K., Schefer, R. W., and Willis, D. R. (1980). Thermophoresis of particles in heated boundary layer. Journal of Fluid Mechanics, 101, 737.
Waldmann, L., and Schmitt, K. H. (1966). Thermophoresis and diffusiophoresis of aerosols. Aerosol Science, edited by C. N. Davies. New York: Academic.
Williams, M. M. R. (1986). Thermophoretic forces acting on a spheroid. Journal of Physics D: Applied Physics, 19, 1631.
Williams, M. M. R., and Loyalka, S. K. (1991). Aerosol Science: Theory and Practice, with Special Applications to the Nuclear Industry. Oxford: Pergamon.
Yamamoto, K., and Ishihara, Y. (1988). Thermophoresis of a spherical particle in a rarefied gas of a transition regime. Physics of Fluids, 31, 3618.
Ye, Y., Pui, D. Y. H., Liu, B. Y. H., Opiolka, S., Blumhorst, S., and Fissan, H. (1991). Thermophoretic effect of particle deposition on a free standing semiconductor wafer in a clean room. Journal of Aerosol Science, 22, 63.
Zheng, F., and Davis, E. J. (2001). Thermophoretic force measurements of aggregates of micro-spheres. Journal of Aerosol Science, 32, 1421.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46207-
dc.description.abstract本論文對非球形粒子在一氣體中的熱泳及緩慢運動作理論之探討。無論是驅動粒子熱泳運動之均勻溫度梯度,或是定溫下使粒子作緩慢運動之外加作用力,其方向都可以是任意的。由於紐森數〈Knudsen number〉較小,因此氣體可視為連續體,而在粒子表面考慮有溫度躍差、熱滑移及摩擦滑移的現象。在皮克列數及雷諾數很小的假設下,求解系統之能量及動量主導方程式。文中非球形粒子的形狀討論了數種情形,包括稍微偏離球形之粒子、軸對稱粒子及橢球粒子。
第二章探討稍微偏離球形之粒子在任意方向之熱泳及定溫下之移動和轉動。系統之能量及動量方程式以微擾展開的方法來漸進求解。對於一般形狀的粒子運動,其能量及動量主導方程式以及邊界條件,皆對於微小形狀偏離之參數作二階微擾展開。最後求出特定形狀的粒子,如長橢球及扁橢球,其熱泳速度及在定溫下緩慢運動所受流體作用之拖曳力和扭力之漸進展開解。將本研究得到的橢球之漸進展開解與文獻中的解析解及數值解比對,可以說是十分吻合,即使是橢球偏離球形不小的情況也是如此。
第三章探討橢球粒子沿著對稱軸方向之熱泳及定溫下的緩慢移動。在橢球座標下,溫度通解為變數分離形式之無窮級數,而流場的通解則是半變數分離形式之無窮級數。吾人將溫度躍差、熱滑移、及速度滑移的邊界條件代入通解,以決定通解中前幾項之未知係數,對此有兩種求解方法,分別是邊界取點法以求得數值解,以及直接求解析解。最後計算橢球粒子之熱泳速度及定溫運動中受到流體施加的拖曳力,在各種流體、粒子、及表面特性的參數下都能得到很好的收斂值,即使是粒子的長寬比十分遠離1的情況亦然。另外,本研究得到的結果與文獻及第二章中所得到的值比對十分吻合。
第四章探討軸對稱粒子沿著對稱軸方向之熱泳運動。在此使用奇點分佈法求得能量及動量主導方程式之通解,對於長形的粒子,奇點分佈在粒子內部對稱軸上,而對於扁形的粒子,奇點則分佈於粒子內部垂直對稱軸之基本面上。吾人將溫度躍差、熱滑移、及速度滑移的邊界條件代入能量及動量主導方程式之通解,並使用邊界取點法,以推導通解之未知係數。最後求得球形及橢球形粒子之熱泳速度,其數值在一定的橢球長寬比內都收斂得很好,而且與文獻及前兩章中得到的數值能夠吻合。
第五章探討軸對稱且前後對稱粒子垂直於對稱軸方向之熱泳運動及定溫下之緩慢移動。在此使用與第四章中相同的奇點分佈及邊界取點法,求解流體之溫度及速度分佈,最後求得球形及橢球形粒子之熱泳速度及定溫下移動所受到的拖曳力之數值結果,其都能收斂到一定的程度,而且能與文獻中的相關解析解以及第二章得到的近似解相符。
本論文中的數值結果皆以正規化後的值來呈現,其中,正規化的熱泳速度是橢球熱泳速度除以相關球形粒子的熱泳速度,此球形粒子的半徑與橢球赤道面半徑相同,而正規化的拖曳力及扭力則是橢球粒子的拖曳力及扭力分別除以不考慮摩擦滑移之相關球形粒子的拖曳力及扭力,此球形粒子的半徑亦與橢球赤道面半徑相同。由研究結果可以發現,在大部分的情況下,正規化的熱泳速度是橢球長寬比的單調變化函數,然而有例外存在。對於長寬比固定的粒子,熱泳可動度大致上都不是溫度躍差係數、速度滑移係數、以及熱傳導係數比的單調函數。另一方面,正規化的拖曳力及扭力是否為橢球長寬比之單調函數必須由摩擦滑移係數的值決定。而對於長寬比固定的橢球粒子,其正規化的拖曳力及扭力隨著摩擦滑移程度的提升而單調遞減。
zh_TW
dc.description.abstractIn this thesis, the steady thermophoresis and creeping motion of non-spherical particles in a gaseous medium are theoretically studied. Either the applied uniform temperature gradient driving the thermophoresis of the particle or the external force driving the creeping motion of the particle in the absence of the temperature gradient can be in an arbitrary direction. The Knudsen number is assumed to be small so that the fluid flow is described by a continuum model with a temperature jump, a thermal slip, and a frictional slip at the surface of the particle. In the limit of small Peclet and Reynolds numbers, the appropriate energy and momentum equations governing the systems are solved for some general cases of non-spherical particles, including the slightly deformed spheres, the axisymmetric particles, and the spheroidal particles.
In Chapter 2, the thermophoresis, translation, and rotation of a slightly deformed aerosol sphere in an arbitrary direction are analyzed. The energy and momentum equations governing the system are solved asymptotically using a method of perturbed expansions. To the second order in the small parameter characterizing the deformation of the aerosol particle from the spherical shape, the thermal and hydrodynamic problems are formulated for the general case, and explicit expressions for the thermophoretic velocity of the particle and the drag and torque exerted on the particle by the fluid due to its isothermal creeping motion are obtained for the special cases of prolate and oblate spheroids. The agreement between our asymptotic results for a spheroid and the relevant analytical and numerical solutions in the literature is quite good, even if the particle deformation from the spherical shape is not very small.
In Chapter 3, the thermophoresis and translation of a spheroidal particle along the axis of revolution of the particle are studied. The general solutions in prolate and oblate spheroidal coordinates can be expressed in infinite-series forms of separation of variables for the temperature distribution and of semi-separation of variables for the stream function. The jump/slip boundary conditions on the particle surface are applied to these general solutions to determine the unknown coefficients of the leading orders, which can be numerical results obtained from a boundary collocation method or explicit formulas derived analytically. Numerical results for the thermophoretic velocity of the particle and the drag force exerted on the particle translating in an isothermal fluid are obtained in a broad range of its aspect ratio with good convergence behavior for various cases. The agreement between our results and the available numerical results in the literature and those in the previous chapter is very good.
In Chapter 4, the thermophoresis of an axisymmetric particle along its axis of revolution is analyzed. A method of distribution of a set of spherical singularities along the axis of revolution within a prolate particle or on the fundamental plane within an oblate particle is used to find the general solutions for the temperature distribution and fluid velocity field. The jump/slip conditions on the particle surface are satisfied by applying a boundary-collocation technique to these general solutions. Numerical results for the thermophoretic velocity are obtained with good convergence behavior for the spherical and spheroidal particles. The results agree quite well with the available solutions in the literature and in the previous chapters.
In Chapter 5, the thermophoresis and translation of a particle of revolution with fore-and-aft symmetry perpendicular to the axis of revolution are explored using the same method of the distribution of spherical singularities combined with the boundary-collocation technique. The thermophoretic velocity of the particle and the drag force acting on the particle by the fluid are calculated with good convergence behavior for various cases, including the spherical and spheroidal particles. The results show excellent agreement with the relevant analytical solutions in the literature and in Chapter 2 for a spheroid whose shape deviates slightly from that of a sphere.
It is found that the thermophoretic mobility of the spheroid normalized by the corresponding value for a sphere with equal equatorial radius in general is a monotonic function of the aspect ratio of the spheroid, but there are some exceptions. For most practical cases of a spheroid with a specified aspect ratio, the thermophoretic mobility of the particle is not a monotonic function of its relative jump/slip coefficients and thermal conductivity. Depending on the value of the slip parameter, the hydrodynamic drag force and torque acting on a moving spheroid normalized by the corresponding values for a no-slip sphere with equal equatorial radius are not necessarily monotonic functions of the aspect ratio of the spheroid. For a moving spheroid with a fixed aspect ratio, its normalized hydrodynamic drag force and torque decrease monotonically with an increase in the slip capability of the particle.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:58:04Z (GMT). No. of bitstreams: 1
ntu-99-F94524011-1.pdf: 12847418 bytes, checksum: a2dbb06a528304ff6c5b349b4bc251fd (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsChapter 1. Introduction 1
1.1. Thermophoresis and Creeping Motion of Aerosol Particles 1
1.2. Structure of the Thesis 6
Chapter 2. Thermophoresis, Translation, and Rotation of Slightly Deformed Aerosol Spheres 9
2.1. Mathematical Formulation for the Thermophoresis of a Slightly Deformed Spherical Particle 9
2.1.1. Temperature distribution 10
2.1.2. Fluid velocity distribution 13
2.1.3. Thermophoretic velocity 17
2.2. Analysis for the Thermophoresis of a Spheroidal Particle 17
2.2.1. Temperature distribution 18
2.2.2. Fluid velocity distribution 20
2.2.3. Thermophoretic velocity and force 23
2.3. Results and Discussion for the Thermophoresis of a Spheroidal Particle 24
2.4. Mathematical Formulation for the Translation and Rotation of a Slightly Deformed Slip Spherical Particle 39
2.5. Analyses for the Translation and Rotation of a Slip Spheroidal Particle 40
2.6. Results and Discussion for the Translation and Rotation of a Slip Spheroidal Particle 45
Chapter 3. Thermophoresis and Translation of Aerosol Spheroids Along Their Axes of Revolution 63
3.1. Mathematical Formulation for the Thermophoresis of a Spheroidal Particle Along Its Axis of Revolution 63
3.1.1. Temperature distribution 65
3.1.1.1. Boundary collocation method 68
3.1.1.2. Analytical method 69
3.1.2. Fluid velocity distribution 71
3.1.2.1. Boundary collocation method 74
3.1.2.2. Analytical method 74
3.1.3. Thermophoretic velocity and force 76
3.2. Results and Discussion for the Thermophoresis of a Spheroidal Particle 77
3.2.1. Boundary collocation solutions 78
3.2.2. Asymptotic Analytical Solutions 90
3.3. Mathematical Formulation for the Translation of a Slip Spheroidal Particle Along Its Axis of Revolution 96
3.3.1. Boundary collocation method 97
3.3.2. Analytical method 97
3.4. Results and Discussion for the Translation of a Slip Spheroidal Particle 98
3.4.1 Boundary collocation solutions 98
3.4.2. Asymptotic analytical solutions 105
Chapter 4. Thermophoresis of Axisymmetric Aerosol Particles Along Their Axes of Revolution 109
4.1. Mathematical Formulation for the Thermophoresis of an Axisymmetric Particle Along Its Axis of Revolution 109
4.1.1. Temperature distribution 111
4.1.2. Fluid velocity distribution 113
4.2. Solution for the Thermophoresis of a Spherical Particle 116
4.2.1. Temperature distribution 116
4.2.2. Fluid velocity distribution 118
4.2.3. Thermophoretic velocity 119
4.3. Axisymmetric Thermophoresis of a Prolate Particle 122
4.4. Results and Discussion for the Thermophoresis of a Prolate Spheroidal Particle 123
4.5. Axisymmetric Thermophoresis of an Oblate Particle 134
4.6. Results and Discussion for the Thermophoresis of an Oblate Spheroidal Particle 137
Chapter 5. Thermophoresis and Translation of Axially and Fore-and-Aft Symmetric Aerosol Particles Normal to Their Axes of Revolution 147
5.1. Mathematical Formulation for the Thermophoresis of an Axially and Fore-and-Aft Symmetric Particle Normal to Its Axis of Revolution 147
5.1.1. Temperature distribution 149
5.1.2. Fluid velocity distribution 152
5.2. Solution for the Thermophoresis of a Spherical Particle 155
5.2.1. Temperature distribution 155
5.2.2. Fluid velocity distribution 156
5.2.3. Thermophoretic velocity 158
5.3. Thermophoresis of a Prolate Particle 161
5.4. Results and Discussion for the Thermophoresis of a Prolate Spheroidal Particle 164
5.5. Thermophoresis of an Oblate Particle 175
5.6. Results and Discussion for the Thermophoresis of an Oblate Spheroidal Particle 178
5.7. Mathematical Formulation for the Translation of an Axially and Fore-and-Aft Symmetric Slip Particle Normal to Its Axis of Revolution 188
5.8. Solution for the Translation of a Slip Spherical Particle 189
5.9. Translation of a Slip Prolate Particle 192
5.10. Results and Discussion for the Translation of a Slip Prolate Spheroidal Particle 193
5.11. Translation of a Slip Oblate Particle 196
5.12. Results and Discussion for the Translation of a Slip Oblate Spheroidal Particle 198
Chapter 6. Summary and Concluding Remarks 203
6.1. Summary 203
6.2. Concluding Remarks 207
Lists of Symbols 209
References 215
Appendix A. Definitions of Some Harmonic Functions in Chapter 2 221
A.1. Harmonic Functions Described in Section 2.2 for the Thermophoresis of a Spheroid 221
A.2. Harmonic Functions Described in Section 2.5 for the Isothermal Translation and Rotation of a Spheroid 227
Appendix B. Analytical Solutions for the Coefficients in Eqs. (3.7) and (3.22) Truncated after Two Terms in Chapter 3 231
B.1. Analytical Solutions for the Coefficients in Eqs. (3.7) and (3.22) for the Thermophoresis of a Spheroid in Sections 3.1 and 3.2 231
B.2. Analytical Solutions for the Coefficients in Eq. (3.22) for the Isothermal Translation of a Spheroid in Sections 3.3 and 3.4 236
Appendix C. Definitions of Some Functions and Density Distributions in Chapter 4 240
C.1. Density Distributions for Thermophoresis of Prolate Particles 241
C.2. Density Distributions for Thermophoresis of Oblate Particles 249
Appendix D. Definitions of Some Functions in Chapter 5 254
Biographical Sketch 258
dc.language.isozh-TW
dc.subject軸對稱氣膠zh_TW
dc.subject摩擦滑移zh_TW
dc.subject熱滑移zh_TW
dc.subject溫度躍差zh_TW
dc.subject緩慢運動zh_TW
dc.subject熱泳zh_TW
dc.subject微偏離球形氣膠zh_TW
dc.subjectTemperature jumpen
dc.subjectSlightly deformed aerosol sphereen
dc.subjectAxisymmetric aerosol particleen
dc.subjectFrictional slipen
dc.subjectThermophoresisen
dc.subjectCreeping motionen
dc.subjectThermal slipen
dc.title非球形氣膠粒子之熱泳及緩慢運動zh_TW
dc.titleThermophoresis and Creeping Motion of Non-Spherical Aerosol Particlesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee李克強,呂世源,曹恆光,詹正雄,廖英志
dc.subject.keyword熱泳,緩慢運動,溫度躍差,熱滑移,摩擦滑移,軸對稱氣膠,微偏離球形氣膠,zh_TW
dc.subject.keywordThermophoresis,Creeping motion,Temperature jump,Thermal slip,Frictional slip,Axisymmetric aerosol particle,Slightly deformed aerosol sphere,en
dc.relation.page258
dc.rights.note有償授權
dc.date.accepted2010-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
12.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved