Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46201
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韋文誠
dc.contributor.authorYen-Yu Chenen
dc.contributor.author陳彥友zh_TW
dc.date.accessioned2021-06-15T04:57:50Z-
dc.date.available2010-08-04
dc.date.copyright2010-08-04
dc.date.issued2010
dc.date.submitted2010-07-29
dc.identifier.citation[1] National Hydrogen Energy Roadmap, issued by U.S. Department of Energy, 2002.
[2] E. D. Wachsman, and S. C. Singhal, “Solid oxide fuel cell commercialization, research and challenges,” Bulletin of American Ceramic Society, 89[3] 22-32 (2010)
[3] G. J. K. Acres, “Recent advances in fuel cell technology and its applications,” J. Power Sources, 100, 60-66 (2001).
[4] G. C. Kostogloudis, G. Tsiniarakis, C. Ftikos, “Chemical reactivity of perovskite oxide SOFC cathodes and yttria stabilized zirconia,” Solid State Ionics, 135, 529-535 (2000).
[5] H. Mitsuyasu, Y. Nonaka, K. Eguchi, and H. Arai, “TEM Observation of Reaction at the Interface between Yttria-Doped Ceria and Yttria-Stabilized Zirconia,” J. Solid State Chemistry, 129, 74-81 (1997).
[6] N. Q. Minh, “Ceramic Fuel Cells,” J. Am. Ceram. Soc., 76, 563-88(1993).
[7] EG&G Services Parsons, Inc. Fuel Cell Handbook, 7th ed., issued by U.S. Department of Energy, 2004.
[8] A. P. Fickett, Handbook of Batteries and Fuel Cells, Chapter 41, McGraw-Hill Inc., 1984.
[9] K. Kordesch, and G, Simader, Fuel Cells and Their Applications, VCH Publishers, Inc., 1996
[10] S. M. Haile, “Fuel cell materials and components,” Acta Materialia, 51, 5981-6000 (2003).
[11] D. Nikbin, “Micro SOFCs: why small is beautiful”, The Fuel Cell Review, 3[2] 21-24 (2006).
[12] P. Knauth and H. L. Tuller, “Solid-State Ionics: Root, Status, and Future Prospects,” J. Am. Ceram. Soc., 85, 1654-80 (2002).
[13] Y. M. Chiang, D. Birnie III, and W. D. Kingery, Physical Ceramics, Chapters 2&3, John Wiley & Sons, Inc., 1997.
[14] C. C. T. Yang, Processing and Characterization of High Temperature Interfacial Reactions of Electrolytic Ceramics and Electrodes of Planar Solid Oxide Fuel Cell (SOFCs), Ph. D. dissertation, National Taiwan University, 2002.
[15] M. Filal, C. Petot, M. Mokchah, C. Chateau, and J. L. Charpentier, “Ionic conductivity of yttrium doped zirconia and the composite effect,” Solid State Ionics, 80, 27-35 (1995).
[16] D. Y. Wang, D. S. Park, J. Griffith, and A. S. Nowick, “Oxygen-Ion Conductivity and Defect Interactions in Yttria-Doped Ceria,” Solid State Ionics, 2, 95-105 (1981).
[17] C. Petot, M. Filal, A. D. Rizea, K. H. Westmacott, J. Y. Lavol, C. Lacour, and R. Ollitrault, “ Microstructure and ionic conductivity of free-dried yttria-doped zirconia,” J. Europ. Ceram. Soc., 18, 1419-28 (1998).
[18] K. R. Williams, An Introduction to Fuel Cell, Ch 8, Elsevier Publishing Co. 193, 1966.
[19] A. Atkinson, “Surface and Interface Mass Transport in Ionic Materials,” Solid State Ionics, 28-30, 1377-87 (1988).
[20] H. L. Tuller, “ZnO Grain Boundaries: Electrical Activity and Diffusion,” J. Electrochem., 4, 33-40 (1999).
[21] R. Ramamoorthy, D. Sundararaman, and S. Ramasamy, “Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs,” Solid State Ionics, 123, 271-278 (1999).
[22] S. P. S. Badwal, J. Drennan and A. E. Hughes, “Segregation in Oxygen-Ion Conducting Solid Electrolytes and its Influence on Electrical properties,” Science of Ceramic Interfaces, edit by J. Nowotny, Elsevier Science Inc., p227, 1991.
[23] X. Guo, and R. Z. Yuan, “On the grain boundaries of ZrO2-based solid electrolyte,” Solid State Ionoics, 80, 159-166 (1995).
[24] S. C. Singhal, “Advances in solid oxide fuel cell technology,” Solid State Ionics, 135, 305-313 (2000).
[25] T. Takahashi, T. Esaka, and H. Iwahara, “Conduction in Bi2O3-based oxide ion conductor under low oxygen pressure. II. Determination of the partial electronic conductivity,” J. Applied Electrochem., 7, 303-308 (1977).
[26] Y. Archi, H. Sakai, O. Yamamoto, Y. Takeda, N. Imanishai, “Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system,” Solid State Ionics, 121, 133-139 (1999).
[27] I. R. Gibson, G. P. Dransfield and J. T. S. Irvine, “Influence of Yttria Concentration upon Electrical Properties and Susceptibility to Ageing of Yttria-Stabilized Zirconias,” J. Europ. Ceram. Soc., 18, 661-667 (1998).
[28] B. C. H. Steele, “Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500oC,” Solid State Ionics, 129, 95-110 (2000).
[29] C. Milliken and S. Guruswamy, “Properties and Performance of Cation-Doped Ceria Electrolyte Materials in Solid Oxide Fuel Cell Application,” J. Am. Ceram. Soc., 85, 2479-86 (2002).
[30] T. S. Zhang, J. Ma, L. B. Kong, S. H. Chan, and J. A. Kilner, “Aging behavior and ionic conductivity of ceria-based ceramics: a comparative study,” Solid State Ionics, 170, 209-217 (2004).
[31] R. Peng, C. Xia, X. Liu, D. Peng, and G. Meng, “Intermediate-temperature SOFCs with thin Ce0.8Y0.2O1.9 films prepared by screen-printing,” Solid State Ionics, 152-153, 561-565 (2002).
[32] X. J. Chen, K. A. Khor, S. H. Chan, L. G. Yu, “Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte,” Materials Science and Engineering, A335, 246-252 (2002).
[33] J. F. Q. Rey, and E. N. S. Muccillo, “Lattice parameters of yttria-doped ceria solid electrolytes,” J. Europ. Ceram. Soc., 24, 1297-1290 (2004).
[34] T. Mori, J. Drennan, Y. Wang, G. Auchterlonie, J. G. Li and A. Yago, “Influence of nano-structure feature on electrolytic properties in Y2O3 doped CeO2 system,” Science and Technology of Advanced Materials, 4, 213-220 (2003).
[35] S. Zha, C. Xia, and G. Meng, “Effect of Gd(Sm) doped on properties of ceria electrolyte for solid oxide fuel cells,” J. Power Sources, 115, 44-48 (2003).
[36] C. S. Tedmon, Jr., H. S. Spacil, and S. P. Mitoff, “Cathode Materials and Performance in High-Temperature Zirconia Electrolyte Fuel Cell,” J. Electrochem. Soc., 116, 1170-75 (1969)
[37] H. Ullmann, N. Trofimenko, F. Tietz, D. Stöver, and A. Ahmad-Khanlou, “Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes,” Solid State Ionics, 138, 79-90(2000).
[38] H. K. Lee, “Electrochemical characteristics of La1-xSrxMnO3 for solid oxide fuel cell,” Materials Chemistry and Physics, 77, 639-646 (2002).
[39] D. W. Dees, T. D. Claar, T. E. Easler, D. C. Fee, and F. C. Mrazek, “Conductivity of porous Ni/ZrO2-Y2O3 cermets,” J. Electrochem. Soc., 134, 2141-46 (1987).
[40] J. H. Lee, H. Moon, H. W. Lee, J. Kim, J. D. Kim, and K. H. Yoon, “Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet,” Solid State Ionics, 148, 15-26 (2002).
[41] W. Z. Zhu, and S. C. Deevi, “Development of interconnect materials for solid oxide fuel cells,” Materials Science and Engineering, A348, 227-243 (2003).
[42] A. Weber, and E. Ivers-Tiffée, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications,” J. Power Sources, 127, 273-283 (2004).
[43] F. Tietz, H. P. Buchkremer, and D. Stover, “Components manufacturing for solid oxide fuel cells,” Solid State Ionics, 152-153, 373-381(2002).
[44] R. Doshi, V. L. Richards, J. D. Carter, X. Wang, and M. Krumpelt, “Development of Solid-Oxide Fuel Cells That Operate at 500oC,” J. Electrochem. Soc., 146[4] 1273-78 (1999).
[45] J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L. J. Gauckler, “Fabrication of thin electrolyte for second-generation solid oxide fuel cells,” Solid State Ionics, 131, 79-96 (2000).
[46] P. C. Su, C. C. Chao, J. H. Shim, R. Fasching, and F. B. Prinz, “Solid Oxide Fuel Cell with Corrugated Thin Film Electrolyte,” Nano Letters, 8, 2289-2292 (2008).
[47] Y. Y. Chen, Formation of Mullite Thin Film by Sol-Gel Process, Master thesis, NTU, 2001.
[48] C. Xia, S. Zha, W. Yang, R. Peng, D. Peng, and G. Meng, “Preparation of yttria stabilized zirconia membranes on porous substrate by a dip-coating process,” Solid State Ionics, 133, 287-294 (2000).
[49] T. Suzuki, I. Kosacki, and H. U. Anderson, “Electrical Conductivity and Lattice Defects in Nanocrystalline Gerium Oxide Thin Films,” J. Am. Ceram. Soc., 84, 2007-2014 (2001).
[50] H. Kozuka, and A. Higuchi, “Stabilization of Poly(vinylpyrrolidone)-containing Alkoxide Solutions for Thick Sol-Gel Barium Titanate Films,” J. Am. Ceram. Soc., 86, 33-38 (2003).
[51] T. Okudo, T. Takahashi, B. N. Nair, M. Sadakata, and H. Nagamoto, “Formation mechanism of crack-free porous YSZ membrane,” J. Mambrane Science, 125, 311-317 (1997).
[52] Y. Y. Chen, and W. C. J. Wei, “Formation of mullite thin film via a sol-gel process with polyvinylpyrrolidone additive,” J. Europ. Ceram. Soc., 21, 2535-40 (2001).
[53] H. Kozuka, and M. Kajimura, “Single-Step Dip Coating of Crack-Free BaTiO3 Films > 1 µm Thick: Effect of Poly(vinylpyrrolidone) on Critical Thickness,” J. Am. Ceram. Soc., 83, 1056-62 (2000).
[54] C. Herring, “Effect of Change of Scale on Sintering Phenomena,” J. Appl. Phys., 21, 301-303 (1950).
[55] P. Duran, J. Tartaj, J. F. Fernandez, M. Villegas, and C. Moure, “Crystallisation and sintering behavior of nanocrystalline Y-TZP powders obtained by seeding-assisted chemical coprecipitation,” Cerm. Inter., 25, 125-135 (1999).
[56] C. C. T. Yang, H. J. Cho, and W. J. Wei, “Quantitative characterization of various tetragonal zirconia polycrystals,”J.Europ.Ceram.Soc.,22,199-207(2002).
[57] R. P. Piticescu, C. Monty, D. Taloi, A. Motoc, and S. Axinte, “Hydrothermal synthesis of zirconia nanomaterials,” J. Europ. Ceram. Soc., 21, 2057-2060(2001).
[58] Kuzjukevics, S. Linderoth, and J. Grabis, “Characterization of yttria-doped zirconia powders produced by plasma-chemical method,” Solid State Ionoics, 92, 253-260 (1996).
[59] S. K. Tadokoro, and E. N. S. Muccillo, “Synthesis and characterization of nanosized powders of yttria-doped zirconia,” J. Alloys and Compounds, 344, 186-189 (2002).
[60] H. E. Esparza-Ponce, A. Reyes-Rojas, W. Antunez-Flores, and M. Miki-Yoshida, “Synthesis and characterization of spherical calcia stabilized zirconia nano-powders obtained by spray pyrolysis,” Materials Science and Engineering, A343, 82-88 (2003).
[61] M. Marinsek, K. Zupan, and J. Macek, “Preparation of Ni-YSZ composite materials for solid oxide fuel cell anode by the gel-precipitation method,” J. Power Sources, 86, 383-89 (2000).
[62] J. J. Choi, J. H. Lee, D. S. Park, B. D. Hahn, and W. H. Yoon., “Oxidation Resistance Coating of LSM and LSCF on SOFC Metallic Interconnects by the Aerosol Deposition Process,” J. Am. Ceram. Soc., 90, 1926-1929 (2007).
[63] Q. A. Huang, R. Hui, B. Wang, and J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis,” Electrochemica Acta, 52, 8144-8164 (2007).
[64] E. Barsoukov, and J. R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Application, 2nd ed., A John Wiley & Sons, Inc., 2005.
[65] J. R. Macdonald, Impedance Spectroscopy, A John Wiley & Sons, Inc., 1987.
[66] N. Wanger, W. Schnurnberger, B. Müller and M. Lang, “Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells,” Electrochimica Acta, 43[24] 3785-3793 (1998).
[67] S. P. Jiang, J. G. Love, and Y. Ramprakash, “Electrode behaviour at (La,Sr)MnO3/Y2O3-ZrO2 interface by electrochemical impedance spectroscopy,” J. Power Sources, 110, 201-208 (2002).
[68] A. Hara, Y. Hirata, S. Sameshima, N. Matsunaga, and T. Horita, “Grain size dependence of electrical properties of Gd-doped ceria,” J. Ceram. Soc. Japan., 116[2] 291-297 (2008).
[69] S. D. Souza, S. J. Visco, and L. C. D. Jonghe, “Thin-film solid oxide fuel cell with high performance at low-temperature,” Solid State Ionics, 98, 57-61 (1997).
[70] Y. J. Leng, S. H. Chan, S. P. Jiang, and K. A. Khor, “Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction,” Solid State Ionics, 170, 9-15 (2004).
[71] T. L. Nguyen, K. Kobayashi, T. Honda, Y. Iimura, K. Kato, A. Neghisi, K. Nozaki, F. Tappero, K. Sasaki, H. Shirahama, K. Ota, M. Dokiya, and T. Kato, “Preparation and evaluation of doped ceria interlayer on supported stabilized zirconia electrolyte SOFCs by wet ceramic processes,” Solid State Ionics, 174, 163-174 (2004).
[72] H. Y. Jung, S. H. Choi, H. Kim, J. W. Son, J. Kim, H. W. Lee, and J. H. Lee, “Fabrication and performance evaluation of 3-cell SOFC stack based on planar 10cm X 10cm anode-supported cells,” J. Power Sources, 159, 478-483 (2006).
[73] B. P. Gorman, and H. U. Anderson, “Processing of Composite Thin Film Solid Oxide Fuel Cell Structure,” J. Am. Ceram. Soc., 88[7] 1747-1753 (2005).
[74] T. Suzuki, P. Jansinski, V. Petrovsky, H. U. Anderson, and F. Dogan, “Performance of a Porous Electrolyte in Single-Chamber SOFCs,” J. Electrochem. Soc., 152[3] A527-A531 (2005).
[75] Y. Hirata, S. Yokomine, S. Sameshima, T. Shimonosono, S. Kishi, and H. Fukudome, “Electrochemical Properties of Solid Oxide Fuel with Sm-Doped Ceria Electrolyte and Cermet Electrodes,” J. Ceram. Soc. Japan, 113[9] 597-604 (2005).
[76] J. Pena-Martinez, D. Marrero-Lopez, J. C. Ruiz-Morales, B. E. Buergler, P. Nunez, and L. J.Gauckler, “SOFC test using Ba0.5Sr0.5Co0.8Fe0.2O3-δ as cathode on La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte,” Solid State Ionics, 177, 2143-2147 (2006).
[77] J. C. Ruiz-Morales, J. Canales-Vazquez, D. Marrero-Lopez, D. Perez-Coll, J. Pena-Martinez, and P. Nunez, “ An all-in-one fluorite-based symmetrical solid oxide fuel cell,” J. Power Sources, 177, 154-160 (2008).
[78] K. Chen, Z. Lu, N. Ai, X. Chen, J. Hu, X. Huang, and W. Su, “ Effect of SDC-impregnated LSM cathode on the performance of anode-supported YSZ films for SOFC ,” J. Power Sources, 167, 84-89 (2007).
[79] S. Hui, D. Yang, Z. Wang, S. Yick, C. Deces-Petit, W. Qu, A. Tuck, R. Maric, and D. Ghosh, “Metal-supported solid oxide fuel cell operated at 400-600oC ,” J. Power Sources, 167, 336-339 (2007).
[80] Y. Liu, S. Hashimoto, H. Nishino, K. Takei, and M. Mori, “Fabrication and characterization of a co-fired La0.6Sr0.4Co0.2FeO3-δ cathode-supported Ce0.9Gd0.1O1.95 thin-film for IT-SOFCs ,” J. Power Sources, 164, 56-64 (2007).
[81] M. Matsuda, T. Hosomi, K. Murata, T. Fukui, and M. Miyake, “Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC,” J. Power Sources, 165, 102-107 (2007).
[82] Z. Wang, J Qian, J. Cao, S. Wang, and, T. Wen, “ A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs),” J. Alloys and Compounds, 437, 264-268 (2007).
[83] Y. Yin, S. Li, C. Xia, and G. Meng, “ Electrochemical performance of IT-SOFCs with a double-layer anode,” J. Power Sources, 167, 90-93 (2007).
[84] Y. Zhang, X. Huang, Z. Lu, Z. Liu, X. Ge, J. Xu, X. Xin, X. Sha, and W. Su, “ Ni-Sm0.2Ce0.8O1.9 anode-supported YSZ electrolyte film and its application in solid oxide fuel cells,” J. Alloys and Compounds, 428, 302-306 (2007)
[85] H. S. Song, S. Lee, S. H. Hyun, J. Kim, and J. Moon, “ Compositional influence of LSM-YSZ composite cathode on improved performance and durability of solid oxide fuel cells,” J. Power Sources, 187, 25-31 (2009)
[86] H. S. Song, S. H. Hyun, J. Kim, H. W Lee, and J. Moon, “A nanocomposite material for highly durable solid oxide fuel cell cathodes,” J. Mater. Chem., 18, 1087-1092 (2008).
[87] Y. Hirata, K. Matsumoto, S. Sameshima, N. Matsunaga, M. Nagamori, and T. Shomonosono, “Cell performance of strontium ruthenium oxide cathode/Gd-doped ceria (GDC) electrolyte/nickel-GDC anode system, “ J. Ceram. Soc. Japan, 117 [11] 1141-1146 (2009)
[88] R. Hui, J. O. Berghaus, C. Deces-Petit, W. Qu, S. Yick, J. G Legoux, and C. Moreau, “High performance metal-supported solid oxide fuel cells fabricated by thermal spray,” J. Power Sources, 191, 371-376 (2009).
[89] K. Sato, T. Kinoshita, H. Abe, and M. Naito, “Novel co-precipitation derived nanostructured LSM-YSZ cathode for intermediate temperature solid oxide fuel cells,” J. Ceram. Soc. Japan, 117[11] 1186-1190 (2009).
[90] Y. Liu, Y. Tang, J. Ding, and J. Liu, “Electrochemical Performance of Cone-Shape Anode-Supported Segment-In-Series SOFCs,” J. Am. Ceram. Soc., (2010) Publishing
[91] W. Z. Zhu, and S.C. Deevi, “A review on the status of anode materials for solid oxide fuel cells,” Materials Science and Engineering, A362, 228-239 (2003).
[92] B.D. Cullity, and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed., Prentice- Hall Inc., Ch 5, 174-77, 2001.
[93] D. Brandon and W.D. Kaplan, Microstructural Characterization of Materials, John Wiley & Sons Ltd., Ch7, 355-363, 1999.
[94] J.S. Reed, Principles of Ceramics Processing, 2nd ed., John Wiley & Sons Inc., 118-133, 1995.
[95] W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed., John Wiley & Sons Ltd., Ch 11, 530-532, 1976.
[96] S. E. Lin, Y. R. Cheng, and W. C. J. Wei, “Synthesis and long-term test of silicate-based sealing glass for intermediate temperature solid oxide fuel cells,” J. Am. Ceram. Soc., (2010) revised
[97] C. C. Chen, M. M. Nasrallah, and H. U. Anderson, “Synthesis and Characterization of YSZ Thin-Film Electrolytes,” Solid State Ionics, 70, 101-108 (1994).
[98] M. Wagner, A. Stiegelschmitt, and A. Roosen, “ Mehrlagen-Foliengiessen zur direkten Herstellung geschichteter keramischer Verbundstrukturen und Untersuchung ihrer mechanischen Eigenschaften,“ Keramische Zeitschrift, 52 , 490-95 (2000).
[99] D. S Lee, J. H. Lee, J. Kim, H. W. Lee, and H.S. Song, “Tuning of the microstructure and electrical properties of SOFC anode via compaction pressure control during forming,” Solid State Ionics, 166, 13-17 (2004).
[100] K. Kordesch, and G. Simader, Fuel Cells and Their Applications, VCH, Germany, 1996.
[101] Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, and N. Imanishai, “Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system,” Solid State Ionics, 121, 133-139 (1999).
[102] A. Kuzjukevics, S. Linderoth, and J. Grabis, “Characterization of yttria-doped zirconia powders produced by plasma-chemical method,” Solid State Ionics, 92, 253-260 (1996).
[103] M. Yashima, M. Kakihana, and M. Yoshimura, “Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application,” Solid State Ionics 86-88, 1131-1149 (1996).
[104] A. H. Heuer, “Transformation Toughening in ZrO2-Containing Ceramics,” J. Am. Ceram. Soc. 70, 689-698 (1987).
[105] Y. J. Leng, S. H. Chan, K. A. Khor, and S. P. Jiang, “Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte,” International Journal of Hydrogen Energy, 29, 1025-1033 (2004).
[106] J. Liu, and S. Barnett, “Thin yttrium-stabilized zirconia electrolyte solid oxide fuel cells by centrifugal casting,” J. Am. Ceram. Soc., 85, 3096-3098 (2002).
[107] H. Ohrui, T. Matsushima, T. Hirai, “Performance of a solid oxide fuel cell fabricated by co-firing,” J. Power Sources, 71, 185-189 (1998).
[108] R. N. Basu, F. Tietz, E. Wessel, and D. Stöver, “Interface reactions during co-firing of solid oxide fuel cell components,” J. Materials Processing Tech. 147, 85–89 (2004)
[109] J. Kim, and Y. S. Lin, “Sol-gel synthesis and characterization of yttria stabilized zirconia membranes,” J. Membrane Science, 139, 75-83 (1998).
[110] X. Xu, C. Xia, S. Huang, D. Peng, “YSZ thin films deposited by spin-coating for IT-SOFCs,” Ceramics International, 31, 1061-1064 (2005).
[111] K. Chen, Z. Lü, N. Ai, X. Huang, Y. Zhang, X. Ge, X. Xin, X. Chen, and W. Su, “Fabrication and performance of anode-supported YSZ films by slurry spin coating,” Solid State Ionics, 177, 3455-3460 (2007).
[112] E. Wanzenberg, F. Tietz, D. Kek, P. Panjan, and D. Stöver, “Influence of electrode contacts on conductivity measurements of thin YSZ electrolyte films and the impact on solid oxide fuel cells,” Solid State Ionics, 164, 121-129 (2003).
[113] T. Kenjo, and T. Nakagawa, “Ohmic Resistance of the Electrode-Electrolyte Interface in Au/YSZ Oxygen Electrodes,” J. Electrochem. Soc., 143, L92-94 (1996).
[114] A. Tsoga, A. Gupta, A. Naouidis, and P. Nikolopoulos, “Gadolinia-Doped Ceria and Yttria Stabilized Zirconia Interfaces: Regarding Their Application For SOFC Technology,” Acta Mater., 48, 4709-14 (2000).
[115] T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, “Reaction between Solid Oxide Fuel Cell Materials,” Solid State Ionics, 50, 189-96 (1992).
[116] H. Mitsuyasu, I. Nonaka, and K. Eguchi, “Analysis of solid state reaction at the interface of yttria-doped ceria/ yttria- stabilized zirconia,” Solid State Ionics, 113-115, 279-284 (1998).
[117] K. Eguchi, N. Akasaka, H. Mitsuyasu, and Y. Nonaka, “Process of solid state reaction between doped ceria and zirconia,” Solid State Ionics, 135, 589-594 (2000)
[118] U.S. Patent 3,231,328, “Barium Titanium Citrate, Barium Titanate and Processes for Producing same,” M.P. Pechini, (1966)
[119] Y. Y. Chen, and W. C. J. Wei, “Processing and Characterization of Ultra-Thin Yttria Stabilized Zirconia (YSZ) Electrolytic Film for SOFC,” Solid State Ionics, 177, 351-57 (2006).
[120] S. Zha, Y. Zhang, and M. Liu, “Functionally graded cathodes fabricated by sol-gel/slurry coating for honeycomb SOFCs,” Solid State Ionics, 176, 25-31 (2005).
[121] S. G. Kim, S. P. Yoon, S. K. Nam, S. H. Hyun, and S. A. Hong, “Fabrication and Characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method,” J. Power Sources, 110, 222-228 (2002).
[122] C. M. Wang, S. Azad, V. Shutthanandan, D. E. McCready, C. H. F. Peden, L. Saraf, and S. Thevuthasan, “Microstructure of ZrO2-CeO2 hetero-multi-layer films grown on YSZ substrate,” Acta Materialia, 53, 1921-29 (2005).
[123] C. M. Wang, S. Thevuthasan, and C. H. F. Peden, “Interface Structure of an Epitaxial Cubic Ceria Film on Cubic Zirconia,” J. Am. Ceram. Soc., 86[2], 363-65 (2003).
[124] D. E. Vladikova, Z. B. Stoynov, A. Barbucci, M. Vivani, P. Carpanese, J. A. Kilner, S. J. Skinner, and R. Rudkin, “Impedance studies of cathode/electrolyte behaviour in SOFC,” Electrochimica Acta, 53 7491-7499 (2008).
[125] S. C. Singhal, and K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Applications, Elsevier Inc, Ch10, 283-286, 2003.
[126] Y. Y Chen, H. Z Hsu, and W. C. J. Wei, “Film Synthesis and Electrical Properties of Porous Sr-doped Lanthanum Manganite (LSM) Electrode by Sol-Gel Process,” Bulletin of the Taiwan Ceramic Society, 29[2] 8-17 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46201-
dc.description.abstract本研究採用兩種方法來製備釔安定化氧化鋯(YSZ)與釔摻雜氧化鈰(YDC)薄膜,用以改善陽極支撐型固態氧化物燃料電池的效率,包含溶膠鍍膜法(sol-state deposition)與膠粒鍍膜法(colloidal deposition)。使用這些方法製備的4-8 mol% 釔安定化氧化鋯薄膜可以達到無裂痕且緻密的要求,在600oC下測試,使用溶膠鍍膜法製備具有0.50 um的4 mol%釔安定化氧化鋯薄膜的單電池,其功率密度可達到477 mW/cm2,高於文獻報導具有數微米的8 mol%釔安定化氧化鋯薄膜的單電池;另外,使用膠體鍍膜法,單次鍍膜亦可成功製備出厚度2.5~8 um無裂痕的釔安定化氧化鋯(YSZ)薄膜。
為了避免釔安定化氧化鋯(YSZ)電解質與鑭鍶錳氧化物(LSM)陰極產生反應,本研究中,使用膠體鍍膜法製備釔摻雜氧化鈰(YDC)電解質薄膜層隔絕,並使用X光繞射儀(XRD)與高解析度穿透式電子顯微鏡(HRTEM)分析釔安定化氧化鋯(YSZ)與釔摻雜氧化鈰(YDC)材料的固溶反應現象,結果顯示反應溫度超過1200oC開始產生固溶反應,當反應溫度高於1600oC時達到完全固溶. 在1300oC時鈰離子擴散到氧化鋯的速度比鋯離子擴散到氧化鈰的速度快。
研究中針對製備單電池進行各項的電化學性質進行分析,包含開路電壓(OCV)、比表面積電阻(ASR)與單電池電效率(I-V-P)等。結果顯示,單電池組的功率可以藉由各項改良來提升,包含電流收集板(current collector)與陰極的接觸、陰極端鎳基多孔電流收集板的氧化、鑭鍶鈷鐵氧化物(LSCF)取代鑭鍶錳氧化物(LSM)陰極與使用新的層狀結構等。
zh_TW
dc.description.abstractVarious thin yttria-stabilized zirconia (YSZ) and ceria (YDC) electrolytic films on anode-supported solid oxide fuel cell (SOFC) have been prepared to improve the performance of the made cells by either a sol-state deposition or colloidal deposition (CD) process. 4-8 mol% yttria-doped zirconia layer was prepared to reach the requirements of crack-free, dense and thin coats. The best half cell consisted of 4YSZ film with 0.5 um thickness showed a higher power density (477 mW/cm2) at 600oC than the cell with microns 8YSZ electrolyte layer. The CD method is also able to prepare crack-free and dense YSZ films in thickness of 2.5~8 um on porous anode substrate via one coating cycle.
YDC as the second electrolytic layer is prepared by colloidal deposition to prevent the reaction of YSZ/(La,Sr)MnOx (LSM). The solid solution reaction between YSZ and YDC has been analyzed. XRD and high resolution TEM results show that the reaction of YSZ and YDC layers starts at 1200oC, and becomes fully solid solution at 1600oC. The diffusion of Ce ions into YSZ grains is faster than the reversed migration of Zr ions into YDC at 1300oC.
Electrochemical analysis on assembled cells has been conducted. By measuring the open circuit voltage (OCV), area specific resistance (ASR), and current-voltage-power (I-V-P), the power density of made gas-tight cells can be improved step-by-step in consideration of the interface contact between current collector/cathodes, oxidation of Ni-foam at cathode in oxidation condition, the replacement of LSM by LSCF cathode material, and new arrangement of layer configuration.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:57:50Z (GMT). No. of bitstreams: 1
ntu-99-D90527007-1.pdf: 11843809 bytes, checksum: a5b756120ad9f2b8c8b739dc48e28ba7 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Motivation 2
1.2 Objectives of the research 4
Chapter 2 Literature Review 7
2.1 Fuel Cell 7
2.1.1 General consideration 7
2.1.2 Electrochemical reactions of fuel cells 8
2.1.3 Types of fuel cells 13
2.2 Solid Oxide Fuel Cell 22
2.2.1 Theories of ionic conduction of solid electrolyte 23
2.2.2 Materials for SOFC 30
2.3 Key issues for development of SOFC 49
2.3.1 Reliability of processing methods of electrode-supported SOFC 49
2.3.2 Improvement of triple phase boundary (TPB) at cathode 54
2.3.3 Diagnosis of SOFC mal-function by AC impedance 55
Chapter 3 Experimental 71
3.1 Design of Experiments 71
3.2 Materials 71
3.2.1 Anode materials 71
3.2.2 Electrolyte materials 72
3.2.3 Cathode materials 73
3.3 Sample Preparation 73
3.3.1 Anode substrate 73
3.3.2 Electrolyte layers 74
3.3.3 Cathode coating layer 77
3.4 Characterization 78
3.4.1 Phase Evolutions 78
3.4.2 Microstructural analysis 78
3.4.3 Electrochemical Properties 79
3.4.4 Other Properties 79
3.5 Configuration design for cell testing 81
Chapter 4 Processing and Characterization of Ultra-Thin Yttria Stabilized Zirconia (YSZ) Electrolytic Films for SOFC 88
4.1 Background 88
4.2 Results and Discussion 90
4.2.1 Characterization of NiO/YSZ anode substrate 91
4.2.2 Crystalline Phase Formation of YSZ 92
4.2.3 Characteristics of thin YSZ Coating 94
4.2.4 Cell Testing 96
4.3 Summary 97
Chapter 5 Fabrication and Characterization of Anode-supported YSZ Electrolyte Films by Colloidal Deposition (CD) Method 110
5.1 Background 110
5.2 Results and Discussion 111
5.2.1 NiO/YSZ anode composite 111
5.2.2 8YSZ electrolyte films by CD method 113
5.2.3 Cell Performance Testing 117
5.3 Summary 119
Chapter 6 Microstructure Analysis of the Interface of Yttria-Doped Ceria (YDC) and Yttria- Stabilized Zirconia (YSZ) 134
6.1 Background 134
6.2 Results 136
6.2.1 Properties of YDC Powder 136
6.2.2 Crystalline Phases of YSZ and YDC Composite 137
6.2.3 Microstructure of YDC/YSZ Composite 137
6.3 Discussion 139
6.4 Summary 143
Chapter 7 Assembly and Analysis of Multi-layered Cells 155
7.1 Background 155
7.2 Results and Discussion 156
7.2.1 Contact issue of cell 156
7.2.2 OCV Evaluation of SOFC 158
7.2.3 Test of multilayer cell assembly 160
7.2.4 Cells with different current collectors 162
7.3 Summary 164
Chapter 8 Conclusion 175
Reference 178
dc.language.isoen
dc.subject氧化鈰zh_TW
dc.subject電解質zh_TW
dc.subject薄膜zh_TW
dc.subject板狀電池zh_TW
dc.subject固態氧化物燃料電池zh_TW
dc.subject功率密度zh_TW
dc.subject釔安定化氧化鋯zh_TW
dc.subjectelectrolyteen
dc.subjectYSZen
dc.subjectSOFCen
dc.subjectPower densityen
dc.subjectsolid solutionen
dc.title陽極支撐型固態氧化物燃料電池之電解質薄膜製程與分析zh_TW
dc.titleProcessing and Characterization of Electrolyte Thin Filmfor Anode-Supported Solid Oxide Fuel Cellen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee馬小康,王錫福,林志光,方冠榮,李堅雄
dc.subject.keyword電解質,釔安定化氧化鋯,固態氧化物燃料電池,功率密度,氧化鈰,薄膜,板狀電池,zh_TW
dc.subject.keywordelectrolyte,YSZ,SOFC,Power density,solid solution,en
dc.relation.page192
dc.rights.note有償授權
dc.date.accepted2010-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
11.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved