Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4619
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖英志
dc.contributor.authorBo-Han Chenen
dc.contributor.author陳柏翰zh_TW
dc.date.accessioned2021-05-14T17:44:12Z-
dc.date.available2020-07-31
dc.date.available2021-05-14T17:44:12Z-
dc.date.copyright2015-07-31
dc.date.issued2015
dc.date.submitted2015-07-30
dc.identifier.citation1. Carlson, D.E. and C.R. Wronski, Amorphous silicon solar cell. Applied Physics Letters, 1976. 28(11): p. 671-673.
2. Burroughes, J., et al., Light-emitting diodes based on conjugated polymers. nature, 1990. 347(6293): p. 539-541.
3. Jin, D.U., et al. 65.2: Distinguished Paper: World‐Largest (6.5”) Flexible Full Color Top Emission AMOLED Display on Plastic Film and Its Bending Properties. in SID Symposium Digest of Technical Papers. 2009. Wiley Online Library.
4. Weisfield, R.L., et al. New amorphous-silicon image sensor for x-ray diagnostic medical imaging applications. 1998.
5. Wong, W.S. and A. Salleo, Flexible electronics: materials and applications. Vol. 11. 2009: Springer Science & Business Media.
6. Clemens, W., et al., From polymer transistors toward printed electronics. Journal of Materials Research, 2004. 19(07): p. 1963-1973.
7. Perelaer, J., et al., Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. Journal of Materials Chemistry, 2010. 20(39): p. 8446-8453.
8. Zhou, L., et al., All-organic active matrix flexible display. Applied Physics Letters, 2006. 88(8): p. 3502.
9. Gelinck, G.H., et al., Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater, 2004. 3(2): p. 106-110.
10. Comiskey, B., et al., An electrophoretic ink for all-printed reflective electronic displays. Nature, 1998. 394(6690): p. 253-255.
11. Somani, P.R. and S. Radhakrishnan, Electrochromic materials and devices: present and future. Materials Chemistry and Physics, 2003. 77(1): p. 117-133.
12. Mortimer, R.J., Electrochromic materials. Chemical Society Reviews, 1997. 26(3): p. 147-156.
13. Monk, P.M., R.J. Mortimer, and D.R. Rosseinsky, Electrochromism: fundamentals and applications. 2008: John Wiley & Sons.
14. Granqvist, C.G., Handbook of inorganic electrochromic materials. 1995: Elsevier.
15. Batchelor, R., M. Burdis, and J. Siddle, Electrochromism in sputtered WO 3 thin films. Journal of the Electrochemical Society, 1996. 143(3): p. 1050-1055.
16. Sharpe, A.G., Chemistry of cyano complexes of the transition metals. 1976: Academic Press.
17. Neff, V.D., Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. Journal of The Electrochemical Society, 1978. 125(6): p. 886-887.
18. Bird, C. and A. Kuhn, Electrochemistry of the viologens. Chem. Soc. Rev., 1981. 10(1): p. 49-82.
19. Schoot, C.J., et al., New electrochromic memory display. Applied Physics Letters, 1973. 23(2): p. 64-65.
20. Garnier, F., et al., Organic conducting polymers derived from substituted thiophenes as electrochromic material. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983. 148(2): p. 299-303.
21. Pickup, P., Electrochemistry of Electronically Conducting Polymer Films, in Modern Aspects of Electrochemistry, R. White, J.O.M. Bockris, and B.E. Conway, Editors. 1999, Springer US. p. 549-597.
22. Jang, G.W., et al., Large‐Area Electrochromic Coatings: Composites of Polyaniline and Polyacrylate‐Silica Hybrid Sol‐Gel Materials. Journal of The Electrochemical Society, 1996. 143(8): p. 2591-2596.
23. Beer, P.D., et al., Cyclic voltammetry of benzo-15-crown-5 ether-vinyl-bipyridyl ligands, their ruthenium (II) complexes and bismethoxyphenyl-vinyl–bipyridyl ruthenium (II) complexes. Electrochemical polymerization studies and supporting electrolyte effects. Journal of the Chemical Society, Faraday Transactions, 1993. 89(2): p. 333-338.
24. Mortimer, R.J., A.L. Dyer, and J.R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays, 2006. 27(1): p. 2-18.
25. Moore, D.J. and T.F. Guarr, Electrochromic properties of electrodeposited lutetium diphthalocyanine thin films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991. 314(1–2): p. 313-321.
26. Goldenberg, L.M., Electrochemical properties of Langmuir—Blodgett films. Journal of Electroanalytical Chemistry, 1994. 379(1–2): p. 3-19.
27. Besbes, S., et al., Electrochromism of octaalkoxymethyl-substituted lutetium diphthalocyanine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987. 237(1): p. 61-68.
28. Lampert, C.M., Electrochromic materials and devices for energy efficient windows. Solar Energy Materials, 1984. 11(1–2): p. 1-27.
29. Hamnett, A., et al., A study of the electrodeposition and subsequent potential cycling of Prussian Blue films using ellipsometry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988. 255(1–2): p. 315-324.
30. Mortimer, R.J. and T.S. Varley, Electrochromic devices based on surface-confined Prussian blue or Ruthenium purple and aqueous solution-phase di-n-heptyl viologen. Solar Energy Materials and Solar Cells, 2013. 109: p. 275-279.
31. Shim, G.H., et al., Inkjet-printed electrochromic devices utilizing polyaniline–silica and poly(3,4-ethylenedioxythiophene)–silica colloidal composite particles. Journal of Materials Chemistry, 2008. 18(5): p. 594.
32. Costa, C., et al., Inkjet printing of sol-gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices. ACS Appl Mater Interfaces, 2012. 4(3): p. 1330-40.
33. Beverina, L., G.A. Pagani, and M. Sassi, Multichromophoric electrochromic polymers: colour tuning of conjugated polymers through the side chain functionalization approach. Chem Commun (Camb), 2014. 50(41): p. 5413-30.
34. Alamer, F.A., et al., Solid-state high-throughput screening for color tuning of electrochromic polymers. Adv Mater, 2013. 25(43): p. 6256-60.
35. Han, F.S., M. Higuchi, and D.G. Kurth, Metallosupramolecular Polyelectrolytes Self-Assembled from Various Pyridine Ring-Substituted Bisterpyridines and Metal Ions:  Photophysical, Electrochemical, and Electrochromic Properties. Journal of the American Chemical Society, 2008. 130(6): p. 2073-2081.
36. Higuchi, M., Electrochromic Organic–Metallic Hybrid Polymers: Fundamentals and Device Applications. Polymer Journal, 2009. 41(7): p. 511-520.
37. Higuchi, M., Stimuli-responsive metallo-supramolecular polymer films: design, synthesis and device fabrication. J. Mater. Chem. C, 2014. 2(44): p. 9331-9341.
38. Tieke, B., Coordinative supramolecular assembly of electrochromic thin films. Current Opinion in Colloid & Interface Science, 2011. 16(6): p. 499-507.
39. Hu, C.-W., et al., Multi-colour electrochromic properties of Fe/Ru-based bimetallo-supramolecular polymers. Journal of Materials Chemistry C, 2013. 1(21): p. 3408.
40. Bulloch, R.H., et al., An electrochromic painter's palette: color mixing via solution co-processing. ACS Appl Mater Interfaces, 2015. 7(3): p. 1406-12.
41. Granqvist, C.-G., Electrochromic materials: Out of a niche. Nat Mater, 2006. 5(2): p. 89-90.
42. Cho, S.I., et al., Nanotube-Based Ultrafast Electrochromic Display. Advanced Materials, 2005. 17(2): p. 171-175.
43. Kamyshny, A., J. Steinke, and S. Magdassi, Metal-based inkjet inks for printed electronics. Open Applied Physics Journal, 2011. 4: p. 19-36.
44. Singh, M., et al., Inkjet printing-process and its applications. Advanced materials, 2010. 22(6): p. 673.
45. Berggren, M., D. Nilsson, and N.D. Robinson, Organic materials for printed electronics. Nature Materials, 2007. 6(1): p. 3-5.
46. Magdassi, S., M. Grouchko, and A. Kamyshny, Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials, 2010. 3(9): p. 4626-4638.
47. Garnett, E.C., et al., Self-limited plasmonic welding of silver nanowire junctions. Nature materials, 2012. 11(3): p. 241-249.
48. Krebs, F.C., et al., A complete process for production of flexible large area polymer solar cells entirely using screen printing—first public demonstration. Solar Energy Materials and Solar Cells, 2009. 93(4): p. 422-441.
49. Ito, S., et al., Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Progress in Photovoltaics, 2007. 15(7): p. 603.
50. Delaney, J.T., et al., A Practical Approach to the Development of Inkjet Printable Functional Ionogels—Bendable, Foldable, Transparent, and Conductive Electrode Materials. Macromolecular rapid communications, 2010. 31(22): p. 1970-1976.
51. Tekin, E., P.J. Smith, and U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008. 4(4): p. 703-713.
52. Miller, S.M., S.M. Troian, and S. Wagner, Direct printing of polymer microstructures on flat and spherical surfaces using a letterpress technique. Journal of Vacuum Science & Technology B, 2002. 20(6): p. 2320-2327.
53. Pudas, M., et al., Gravure printing of conductive particulate polymer inks on flexible substrates. Progress in Organic Coatings, 2005. 54(4): p. 310-316.
54. Puetz, J. and M.A. Aegerter, Direct gravure printing of indium tin oxide nanoparticle patterns on polymer foils. Thin Solid Films, 2008. 516(14): p. 4495-4501.
55. Xia, Y. and G.M. Whitesides, Soft lithography. Annual review of materials science, 1998. 28(1): p. 153-184.
56. Unger, M.A., et al., Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 2000. 288(5463): p. 113-116.
57. Hidber, P.C., et al., Microcontact printing of palladium colloids: micron-scale patterning by electroless deposition of copper. Langmuir, 1996. 12(5): p. 1375-1380.
58. Tate, J., et al., Anodization and microcontact printing on electroless silver: Solution-based fabrication procedures for low-voltage electronic systems with organic active components. Langmuir, 2000. 16(14): p. 6054-6060.
59. Dong, H., W.W. Carr, and J.F. Morris, An experimental study of drop-on-demand drop formation. Physics of Fluids (1994-present), 2006. 18(7): p. 072102.
60. Grove, M., et al., Color flat panel manufacturing using ink jet technology. Display Works, 1999. 99.
61. Shah, V.G. and D.J. Hayes, Trimming and printing of embedded resistors using demand-mode ink-jet technology and conductive polymer. IPC Printed Circuit Expo, 2002: p. 1-5.
62. Wallace, D., et al. Ink-jet as a MEMS manufacturing tool. in 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. 2007. American Society of Mechanical Engineers.
63. Hayes, D.J., D.B. Wallace, and W. Royall Cox. MicroJet printing of solder and polymers for multi-chip modules and chip-scale packages. in Proceedings-SPIE the International Society for Optical Engineering. 1999. Citeseer.
64. Le, H.P., Progress and trends in ink-jet printing technology. Journal of Imaging Science and Technology, 1998. 42(1): p. 49-62.
65. Brünahl, J. and A.M. Grishin, Piezoelectric shear mode drop-on-demand inkjet actuator. Sensors and Actuators A: Physical, 2002. 101(3): p. 371-382.
66. Lee, K.H., et al., 'Cut and stick' rubbery ion gels as high capacitance gate dielectrics. Adv Mater, 2012. 24(32): p. 4457-62.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4619-
dc.description.abstract本論文利用一種簡單且迅速的噴墨直寫技術來製作多色彩可撓曲式圖樣化電致變色元件。此元件係利用一種電致變色超分子聚合物 (Metallo-supramolecular polymers, MEPE) 製成,相較於傳統電致變色材料,MEPE具有高對比度、高穩定性及高著色效率等特性。由於此聚合物為水溶性,因此可將其製作成墨水,並利用噴墨技術直接噴塗於導電基材上。
首先,為了製作出平整且緻密的變色材料薄膜,使用不同的液滴排列並探討其對薄膜樣態的影響。找出均勻噴塗的方式後,在透明導電基材ITO-PEN上製作薄膜並以循環伏安法及光譜儀測量其電化學與光學性質。與先前之文獻做比較,電致變色材料薄膜之吸收峰值與氧化還原電位並無因不同製程而改變。印製而成的變色薄膜接著與固態電解質搭配,組合成可撓曲式電致變色元件。此電解質是由高沸點之非揮發性離子液體 (EMIBTI) 與高分子 (PVDF-HFP) 製作而成。當改變施加的電壓時 (-3.0~3.0 V),此元件可在兩秒鐘內著色並具有相當高的對比度以及著色效率。在580 nm之波長下,其穿透度變化為40.1%並且具有445 cm2C-1之高著色效率。當此元件彎曲時,其穿透度變化仍可達30.1%且著色時間不變,是相當好的展現。
接著,利用噴墨技術將兩種不同顏色之MEPE混合成一系列不同顏色以及圖樣化之電致變色薄膜。同樣地,利用光譜儀及循環伏安法探討混合後之特性。可發現兩者之吸收光譜會線性疊加,進而顯現不同的顏色。與先前文獻使用合成調整顏色不同的是:藉由噴墨技術混合的變色薄膜,其氧化還原電位並不會因兩種金屬離子的交互作用而偏移。最後,本論文利用噴墨技術可在不需遮罩的情形下精確噴印出所設計的圖樣之特點,搭配兩種變色材料製作圖樣化之電致變色元件,為此製程在軟性顯示器的應用提供進一步的可能性。
zh_TW
dc.description.abstractIn this thesis, multi-colored electrochromic (EC) thin film devices were prepared by a direct-writing method. Metallo-supramolecular polymers (MEPE) solutions with two primary colors were inkjet-printed digitally on flexible electrodes. Uniform EC thin films are fabricated via inkjet printing. Further, by digitally controlling print dosages of each species, colors of the printed EC thin film patterns can be adjusted directly without pre-mixing or synthesizing new materials. The printed EC thin films were then laminated with a solid transparent thin film electrolyte and a transparent conductive thin film to form an electrochromic device (ECD). After applying a DC voltage, the printed ECDs exhibited a great contrast with a transmittance change (ΔT) of 40.1% and a high coloration efficiency of 445 cm2C-1 at 580 nm within a short darkening time of 2 s. The flexible ECDs can also be made base on ITO-PEN and showed same darkening time of 2 s and still have a high ΔT of 30.1% under bending condition. In summary, this study demonstrated the feasibility to fabricate display devices with different color set up by all-solution process, and can be further extended to other types of displays.en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:44:12Z (GMT). No. of bitstreams: 1
ntu-104-R02524059-1.pdf: 3242192 bytes, checksum: 9c22e429bee6de5751dab3f6aa6f9922 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 #
Acknowledgements i
中文摘要 ii
ABSTRACT iii
Table of Contents iv
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Objective 2
1.3 Thesis structure 6
Chapter 2 Literature Review 7
2.1 Electrochromic 7
2.1.1 Transmittance Attenuation 12
2.1.2 Coloration Efficiency 12
2.1.3 Switching Speed 13
2.2 Flexible Electronics and Printing Technology 14
2.3 Classification of Inkjet Printing Technology 15
2.3.1 Continuous Mode[61-64] 15
2.3.2 Drop-on-demand Mode[61-65] 16
Chapter 3 Inkjet Printing EC device 18
3.1 Experimental 18
3.1.1 Materials 18
3.1.2 Preperation of EC Inks 19
3.1.3 Ink Deposition on Surfaces 21
3.1.4 Printing of EC Thin Film 21
3.1.5 Solid-State Electrolyte 25
3.1.6 Electrochromic Device 26
3.2 Results & Discussion 27
3.2.1 Ink Deposition on Substrates 27
3.2.2 Influence of Printing Mask Scheme 29
3.2.3 UV-vis Absorption 33
3.2.4 Cyclic Voltammetry Method 35
3.2.5 Solid-State Electrolyte 37
3.2.6 Transmittance Change 38
3.2.7 Coloration Efficiency 45
3.2.8 Long-Term Stability 51
Chapter 4 Multi-Color EC device 52
4.1 Experimental 52
4.1.1 Color Mixing Serious 52
4.1.2 Multi-Color EC Pattern 53
4.1.3 Electrochromic Device 54
4.2 Results & Discussion 55
4.2.1 Color Mixing Series 55
4.2.2 Multi-Color EC Pattern 56
4.2.3 UV-vis Absorption 57
4.2.4 Cyclic Voltammetry Method 58
4.2.5 Multi-Color EC Devices 60
Chapter 5 Conclusion 64
Chapter 6 Future Prospect 65
References...... 66
dc.language.isoen
dc.title可撓式電致變色元件之噴墨混色與圖樣化研究zh_TW
dc.titlePrinted Multi-Color High-Contrast Flexible Electrochromic Devicesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何國川,林正嵐,衛子健,?口昌芳(Masayoshi Higuchi)
dc.subject.keyword電致變色,印刷電子,噴墨技術,金屬配位超分子,顯示器,zh_TW
dc.subject.keywordMetallo-Supramolecular,Display,Electrochromic,Printing Electronics,Inkjet Printing,en
dc.relation.page70
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf3.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved