Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46188
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張震東
dc.contributor.authorYu-Jung Leeen
dc.contributor.author李昱蓉zh_TW
dc.date.accessioned2021-06-15T04:57:16Z-
dc.date.available2011-07-30
dc.date.copyright2010-07-30
dc.date.issued2010
dc.date.submitted2010-07-29
dc.identifier.citation[1] J.-Y. Wang, R.A. Casero, SpringerLink (Online service), Polyamine Cell Signaling Physiology, Pharmacology, and Cancer Research, Humana Press Inc., Totowa, NJ, 2006, pp. xiv, 490 p.
[2] A. Lentini, A. Abbruzzese, M. Caraglia, M. Marra, S. Beninati, Protein-polyamine conjugation by transglutaminase in cancer cell differentiation: review article, Amino Acids 26 (2004) 331-337.
[3] T. Thomas, T.J. Thomas, Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications, Cell Mol Life Sci 58 (2001) 244-258.
[4] S.M. Oredsson, Polyamine dependence of normal cell-cycle progression, Biochem Soc Trans 31 (2003) 366-370.
[5] R.J. Bergeron, J.S. McManis, W.R. Weimar, K.M. Schreier, F. Gao, Q. Wu, J. Ortiz-Ocasio, G.R. Luchetta, C. Porter, J.R. Vinson, The role of charge in polyamine analogue recognition, J Med Chem 38 (1995) 2278-2285.
[6] A. Berwanger, S. Eyrisch, I. Schuster, V. Helms, R. Bernhardt, Polyamines: naturally occurring small molecule modulators of electrostatic protein-protein interactions, J Inorg Biochem 104 118-125.
[7] K. Igarashi, K. Kashiwagi, Polyamines: mysterious modulators of cellular functions, Biochem Biophys Res Commun 271 (2000) 559-564.
[8] C.A. Rinehart, Jr., K.Y. Chen, Characterization of the polyamine transport system in mouse neuroblastoma cells. Effects of sodium and system A amino acids, J Biol Chem 259 (1984) 4750-4756.
[9] K. Hoshino, E. Momiyama, K. Yoshida, K. Nishimura, S. Sakai, T. Toida, K. Kashiwagi, K. Igarashi, Polyamine transport by mammalian cells and mitochondria: role of antizyme and glycosaminoglycans, J Biol Chem 280 (2005) 42801-42808.
[10] A.E. Pegg, Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy, Cancer Res 48 (1988) 759-774.
[11] A. Manni, Polyamine involvement in breast cancer phenotype, In Vivo 16 (2002) 493-500.
[12] M. Griffin, R. Casadio, C.M. Bergamini, Transglutaminases: nature's biological glues, Biochem J 368 (2002) 377-396.
[13] M.K. Haddox, D.H. Russell, Increased nuclear conjugated polyamines and transglutaminase during liver regeneration, Proc Natl Acad Sci U S A 78 (1981) 1712-1716.
[14] C. Chen, R.A. Hiipakka, S. Liao, Prostate alpha-protein: subunit structure, polyamine binding, and inhibition of nuclear chromatin binding of androgen-receptor complex, J Steroid Biochem 11 (1979) 401-405.
[15] T. Liang, G. Mezzetti, C. Chen, S. Liao, Selective polyamine-binding proteins. Spermine binding by an androgen-sensitive phosphoprotein, Biochim Biophys Acta 542 (1978) 430-441.
[16] G. Mezzetti, M.S. Moruzzi, G. Capone, B. Barbiroli, Polyamine binding by a cytoplasmic factor in the duodenal mucosa of new-born chick, Biochem Biophys Res Commun 97 (1980) 222-229.
[17] M.S. Moruzzi, M.G. Monti, G. Piccinini, G. Mezzetti, Spermine-binding protein and polyamine metabolism in duodenal mucosa of chick embryo, Life Sci 31 (1982) 1639-1644.
[18] M. Grabenauer, S.L. Bernstein, J.C. Lee, T. Wyttenbach, N.F. Dupuis, H.B. Gray, J.R. Winkler, M.T. Bowers, Spermine binding to Parkinson's protein alpha-synuclein and its disease-related A30P and A53T mutants, J Phys Chem B 112 (2008) 11147-11154.
[19] L. Li, J. Li, J.N. Rao, M. Li, B.L. Bass, J.Y. Wang, Inhibition of polyamine synthesis induces p53 gene expression but not apoptosis, Am J Physiol 276 (1999) C946-954.
[20] S. Chiu, N.L. Oleinick, Radioprotection of cellular chromatin by the polyamines spermine and putrescine: preferential action against formation of DNA-protein crosslinks, Radiat Res 149 (1998) 543-549.
[21] K.J. Pollard, M.L. Samuels, K.A. Crowley, J.C. Hansen, C.L. Peterson, Functional interaction between GCN5 and polyamines: a new role for core histone acetylation, EMBO J 18 (1999) 5622-5633.
[22] H.S. Basu, I.V. Smirnov, H.F. Peng, K. Tiffany, V. Jackson, Effects of spermine and its cytotoxic analogs on nucleosome formation on topologically stressed DNA in vitro, Eur J Biochem 243 (1997) 247-258.
[23] J.Y. Cha, J.J. Repa, The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR, J Biol Chem 282 (2007) 743-751.
[24] N. Sato, Y. Ohtake, H. Kato, S. Abe, H. Kohno, Y. Ohkubo, Effects of polyamines on histone polymerization, J Protein Chem 22 (2003) 303-307.
[25] B.M. Spiegelman, R. Heinrich, Biological control through regulated transcriptional coactivators, Cell 119 (2004) 157-167.
[26] C. Francastel, D. Schubeler, D.I. Martin, M. Groudine, Nuclear compartmentalization and gene activity, Nat Rev Mol Cell Biol 1 (2000) 137-143.
[27] S.M. Gasser, Positions of potential: nuclear organization and gene expression, Cell 104 (2001) 639-642.
[28] G.S. Manning, The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides, Q Rev Biophys 11 (1978) 179-246.
[29] R.W. Wilson, V.A. Bloomfield, Counterion-induced condesation of deoxyribonucleic acid. a light-scattering study, Biochemistry 18 (1979) 2192-2196.
[30] V. Vijayanathan, T. Thomas, T.J. Thomas, DNA nanoparticles and development of DNA delivery vehicles for gene therapy, Biochemistry 41 (2002) 14085-14094.
[31] L.W. Tari, A.S. Secco, Base-pair opening and spermine binding--B-DNA features displayed in the crystal structure of a gal operon fragment: implications for protein-DNA recognition, Nucleic Acids Res 23 (1995) 2065-2073.
[32] M.K. Chattopadhyay, C.W. Tabor, H. Tabor, Polyamines protect Escherichia coli cells from the toxic effect of oxygen, Proc Natl Acad Sci U S A 100 (2003) 2261-2265.
[33] C.W. Tabor, H. Tabor, Polyamines, Annu Rev Biochem 53 (1984) 749-790.
[34] M.A. Xaplanteri, A.D. Petropoulos, G.P. Dinos, D.L. Kalpaxis, Localization of spermine binding sites in 23S rRNA by photoaffinity labeling: parsing the spermine contribution to ribosomal 50S subunit functions, Nucleic Acids Res 33 (2005) 2792-2805.
[35] L. Jovine, S. Djordjevic, D. Rhodes, The crystal structure of yeast phenylalanine tRNA at 2.0 A resolution: cleavage by Mg(2+) in 15-year old crystals, J Mol Biol 301 (2000) 401-414.
[36] S. Venkiteswaran, V. Vijayanathan, A. Shirahata, T. Thomas, T.J. Thomas, Antisense recognition of the HER-2 mRNA: effects of phosphorothioate substitution and polyamines on DNA.RNA, RNA.RNA, and DNA.DNA duplex stability, Biochemistry 44 (2005) 303-312.
[37] C. Bello-Fernandez, G. Packham, J.L. Cleveland, The ornithine decarboxylase gene is a transcriptional target of c-Myc, Proc Natl Acad Sci U S A 90 (1993) 7804-7808.
[38] L. Li, J.N. Rao, X. Guo, L. Liu, R. Santora, B.L. Bass, J.Y. Wang, Polyamine depletion stabilizes p53 resulting in inhibition of normal intestinal epithelial cell proliferation, Am J Physiol Cell Physiol 281 (2001) C941-953.
[39] D.L. Kramer, B.D. Chang, Y. Chen, P. Diegelman, K. Alm, A.R. Black, I.B. Roninson, C.W. Porter, Polyamine depletion in human melanoma cells leads to G1 arrest associated with induction of p21WAF1/CIP1/SDI1, changes in the expression of p21-regulated genes, and a senescence-like phenotype, Cancer Res 61 (2001) 7754-7762.
[40] R.M. Ray, B.J. Zimmerman, S.A. McCormack, T.B. Patel, L.R. Johnson, Polyamine depletion arrests cell cycle and induces inhibitors p21(Waf1/Cip1), p27(Kip1), and p53 in IEC-6 cells, Am J Physiol 276 (1999) C684-691.
[41] L. Li, L. Liu, J.N. Rao, A. Esmaili, E.D. Strauch, B.L. Bass, J.Y. Wang, JunD stabilization results in inhibition of normal intestinal epithelial cell growth through P21 after polyamine depletion, Gastroenterology 123 (2002) 764-779.
[42] A.R. Patel, J.Y. Wang, Polyamine depletion is associated with an increase in JunD/AP-1 activity in small intestinal crypt cells, Am J Physiol 276 (1999) G441-450.
[43] T. Zou, J.N. Rao, L. Liu, B.S. Marasa, K.M. Keledjian, A.H. Zhang, L. Xiao, B.L. Bass, J.Y. Wang, Polyamine depletion induces nucleophosmin modulating stability and transcriptional activity of p53 in intestinal epithelial cells, Am J Physiol Cell Physiol 289 (2005) C686-696.
[44] A.R. Patel, J. Li, B.L. Bass, J.Y. Wang, Expression of the transforming growth factor-beta gene during growth inhibition following polyamine depletion, Am J Physiol 275 (1998) C590-598.
[45] L. Liu, R. Santora, J.N. Rao, X. Guo, T. Zou, H.M. Zhang, D.J. Turner, J.Y. Wang, Activation of TGF-beta-Smad signaling pathway following polyamine depletion in intestinal epithelial cells, Am J Physiol Gastrointest Liver Physiol 285 (2003) G1056-1067.
[46] K. Igarashi, K. Kashiwagi, Polyamine Modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines, J Biochem 139 (2006) 11-16.
[47] Y. Huang, D.S. Higginson, L. Hester, M.H. Park, S.H. Snyder, Neuronal growth and survival mediated by eIF5A, a polyamine-modified translation initiation factor, Proc Natl Acad Sci U S A 104 (2007) 4194-4199.
[48] M.K. Chattopadhyay, M.H. Park, H. Tabor, Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine, Proc Natl Acad Sci U S A 105 (2008) 6554-6559.
[49] M.E. Tome, E.W. Gerner, Hypusine modification in eukaryotic initiation factor 5A in rodent cells selected for resistance to growth inhibition by ornithine decarboxylase-inhibiting drugs, Biochem J 320 ( Pt 1) (1996) 55-60.
[50] Y. Murakami, J. Suzuki, K. Samejima, K. Kikuchi, T. Hascilowicz, N. Murai, S. Matsufuji, T. Oka, The change of antizyme inhibitor expression and its possible role during mammalian cell cycle, Exp Cell Res 315 (2009) 2301-2311.
[51] K. Kanerva, L.T. Makitie, N. Back, L.C. Andersson, Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking, Exp Cell Res 316 1896-1906.
[52] K. Zahedi, J.J. Bissler, Z. Wang, A. Josyula, L. Lu, P. Diegelman, N. Kisiel, C.W. Porter, M. Soleimani, Spermidine/spermine N1-acetyltransferase overexpression in kidney epithelial cells disrupts polyamine homeostasis, leads to DNA damage, and causes G2 arrest, Am J Physiol Cell Physiol 292 (2007) C1204-1215.
[53] C.W. Akey, K. Luger, Histone chaperones and nucleosome assembly, Curr Opin Struct Biol 13 (2003) 6-14.
[54] O. Hayashida, N. Ogawa, M. Uchiyama, Surface recognition and fluorescence sensing of histone by dansyl-appended cyclophane-based resorcinarene trimer, J Am Chem Soc 129 (2007) 13698-13705.
[55] T. Ikura, S. Tashiro, A. Kakino, H. Shima, N. Jacob, R. Amunugama, K. Yoder, S. Izumi, I. Kuraoka, K. Tanaka, H. Kimura, M. Ikura, S. Nishikubo, T. Ito, A. Muto, K. Miyagawa, S. Takeda, R. Fishel, K. Igarashi, K. Kamiya, DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics, Mol Cell Biol 27 (2007) 7028-7040.
[56] T.T. Paull, E.P. Rogakou, V. Yamazaki, C.U. Kirchgessner, M. Gellert, W.M. Bonner, A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage, Curr Biol 10 (2000) 886-895.
[57] M. Adam, F. Robert, M. Larochelle, L. Gaudreau, H2A.Z is required for global chromatin integrity and for recruitment of RNA polymerase II under specific conditions, Mol Cell Biol 21 (2001) 6270-6279.
[58] P. Lomonte, K.F. Sullivan, R.D. Everett, Degradation of nucleosome-associated centromeric histone H3-like protein CENP-A induced by herpes simplex virus type 1 protein ICP0, J Biol Chem 276 (2001) 5829-5835.
[59] S.G. Zeitlin, C.M. Barber, C.D. Allis, K.F. Sullivan, Differential regulation of CENP-A and histone H3 phosphorylation in G2/M, J Cell Sci 114 (2001) 653-661.
[60] I.Y. Chen, J. Lypowy, J. Pain, D. Sayed, S. Grinberg, R.R. Alcendor, J. Sadoshima, M. Abdellatif, Histone H2A.z is essential for cardiac myocyte hypertrophy but opposed by silent information regulator 2alpha, J Biol Chem 281 (2006) 19369-19377.
[61] S. Mishra, A. Saleh, P.S. Espino, J.R. Davie, L.J. Murphy, Phosphorylation of histones by tissue transglutaminase, J Biol Chem 281 (2006) 5532-5538.
[62] B.D. Strahl, C.D. Allis, The language of covalent histone modifications, Nature 403 (2000) 41-45.
[63] S.J. Nowak, V.G. Corces, Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation, Trends Genet 20 (2004) 214-220.
[64] G. Melino, M. Piacentini, 'Tissue' transglutaminase in cell death: a downstream or a multifunctional upstream effector?, FEBS Lett 430 (1998) 59-63.
[65] E. Candi, S. Oddi, A. Terrinoni, A. Paradisi, M. Ranalli, A. Finazzi-Agro, G. Melino, Transglutaminase 5 cross-links loricrin, involucrin, and small proline-rich proteins in vitro, J Biol Chem 276 (2001) 35014-35023.
[66] X. Peng, Y. Zhang, H. Zhang, S. Graner, J.F. Williams, M.L. Levitt, A. Lokshin, Interaction of tissue transglutaminase with nuclear transport protein importin-alpha3, FEBS Lett 446 (1999) 35-39.
[67] G. Hasegawa, M. Suwa, Y. Ichikawa, T. Ohtsuka, S. Kumagai, M. Kikuchi, Y. Sato, Y. Saito, A novel function of tissue-type transglutaminase: protein disulphide isomerase, Biochem J 373 (2003) 793-803.
[68] H. Nakaoka, D.M. Perez, K.J. Baek, T. Das, A. Husain, K. Misono, M.J. Im, R.M. Graham, Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function, Science 264 (1994) 1593-1596.
[69] S. Mishra, G. Melino, L.J. Murphy, Transglutaminase 2 kinase activity facilitates protein kinase A-induced phosphorylation of retinoblastoma protein, J Biol Chem 282 (2007) 18108-18115.
[70] R. Ientile, D. Caccamo, M. Griffin, Tissue transglutaminase and the stress response, Amino Acids 33 (2007) 385-394.
[71] M. Piacentini, L. Fesus, M.G. Farrace, L. Ghibelli, L. Piredda, G. Melino, The expression of 'tissue' transglutaminase in two human cancer cell lines is related with the programmed cell death (apoptosis), Eur J Cell Biol 54 (1991) 246-254.
[72] L. Piredda, M.G. Farrace, M. Lo Bello, W. Malorni, G. Melino, R. Petruzzelli, M. Piacentini, Identification of 'tissue' transglutaminase binding proteins in neural cells committed to apoptosis, FASEB J 13 (1999) 355-364.
[73] M. Lesort, K. Attanavanich, J. Zhang, G.V. Johnson, Distinct nuclear localization and activity of tissue transglutaminase, J Biol Chem 273 (1998) 11991-11994.
[74] J. Lee, Y.S. Kim, D.H. Choi, M.S. Bang, T.R. Han, T.H. Joh, S.Y. Kim, Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia, J Biol Chem 279 (2004) 53725-53735.
[75] E. Ballestar, C. Abad, L. Franco, Core histones are glutaminyl substrates for tissue transglutaminase, J Biol Chem 271 (1996) 18817-18824.
[76] J.H. Kim, K.H. Nam, O.S. Kwon, I.G. Kim, M. Bustin, H.E. Choy, S.C. Park, Histone cross-linking by transglutaminase, Biochem Biophys Res Commun 293 (2002) 1453-1457.
[77] K. Nunomura, S. Kawakami, T. Shimizu, T. Hara, K. Nakamura, Y. Terakawa, A. Yamasaki, S. Ikegami, In vivo cross-linking of nucleosomal histones catalyzed by nuclear transglutaminase in starfish sperm and its induction by egg jelly triggering the acrosome reaction, Eur J Biochem 270 (2003) 3750-3759.
[78] E. Ballestar, M. Boix-Chornet, L. Franco, Conformational changes in the nucleosome followed by the selective accessibility of histone glutamines in the transglutaminase reaction: effects of ionic strength, Biochemistry 40 (2001) 1922-1929.
[79] D. Meksuriyen, T. Fukuchi-Shimogori, H. Tomitori, K. Kashiwagi, T. Toida, T. Imanari, G. Kawai, K. Igarashi, Formation of a complex containing ATP, Mg2+, and spermine. Structural evidence and biological significance, J Biol Chem 273 (1998) 30939-30944.
[80] D. Shechter, H.L. Dormann, C.D. Allis, S.B. Hake, Extraction, purification and analysis of histones, Nat Protoc 2 (2007) 1445-1457.
[81] S. Javanmoghadam-Kamrani, K. Keyomarsi, Synchronization of the cell cycle using lovastatin, Cell Cycle 7 (2008) 2434-2440.
[82] L. Fesus, M. Piacentini, Transglutaminase 2: an enigmatic enzyme with diverse functions, Trends Biochem Sci 27 (2002) 534-539.
[83] M.T. Haber, T. Fukui, M.S. Lebowitz, J.M. Lowenstein, Activation of phosphoinositide-specific phospholipase C delta from rat liver by polyamines and basic proteins, Arch Biochem Biophys 288 (1991) 243-249.
[84] A. Yabuuchi, T. Tani, Y. Kato, Y. Tsunoda, Nuclear transfer of mouse follicular epithelial cells pretreated with spermine, protamine, or putrescine, J Exp Zool 289 (2001) 208-212.
[85] G. Schmidt, J. Selzer, M. Lerm, K. Aktories, The Rho-deamidating cytotoxic necrotizing factor 1 from Escherichia coli possesses transglutaminase activity. Cysteine 866 and histidine 881 are essential for enzyme activity, J Biol Chem 273 (1998) 13669-13674.
[86] M. Masuda, L. Betancourt, T. Matsuzawa, T. Kashimoto, T. Takao, Y. Shimonishi, Y. Horiguchi, Activation of rho through a cross-link with polyamines catalyzed by Bordetella dermonecrotizing toxin, EMBO J 19 (2000) 521-530.
[87] C.M. Smith, P.R. Gafken, Z. Zhang, D.E. Gottschling, J.B. Smith, D.L. Smith, Mass spectrometric quantification of acetylation at specific lysines within the amino-terminal tail of histone H4, Anal Biochem 316 (2003) 23-33.
[88] M. Naldi, V. Andrisano, J. Fiori, N. Calonghi, E. Pagnotta, C. Parolin, G. Pieraccini, L. Masotti, Histone proteins determined in a human colon cancer by high-performance liquid chromatography and mass spectrometry, J Chromatogr A 1129 (2006) 73-81.
[89] X. Su, N.K. Jacob, R. Amunugama, D.M. Lucas, A.R. Knapp, C. Ren, M.E. Davis, G. Marcucci, M.R. Parthun, J.C. Byrd, R. Fishel, M.A. Freitas, Liquid chromatography mass spectrometry profiling of histones, J Chromatogr B Analyt Technol Biomed Life Sci 850 (2007) 440-454.
[90] K. Zhang, V.V. Sridhar, J. Zhu, A. Kapoor, J.K. Zhu, Distinctive core histone post-translational modification patterns in Arabidopsis thaliana, PLoS One 2 (2007) e1210.
[91] G.G. Chen, G. Turecki, O.A. Mamer, A quantitative GC-MS method for three major polyamines in postmortem brain cortex, J Mass Spectrom 44 (2009) 1203-1210.
[92] G. Unteregger, Spermine induced phosphorylation of a 42 kD/pI 5.9 nuclear protein in different human tumor cell lines, Biochem Biophys Res Commun 130 (1985) 700-707.
[93] O.G. Issinger, T. Martin, W.W. Richter, M. Olson, H. Fujiki, Hyperphosphorylation of N-60, a protein structurally and immunologically related to nucleolin after tumour-promoter treatment, EMBO J 7 (1988) 1621-1626.
[94] S.B. Seo, P. McNamara, S. Heo, A. Turner, W.S. Lane, D. Chakravarti, Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein, Cell 104 (2001) 119-130.
[95] T.S. Lai, Y. Liu, W. Li, C.S. Greenberg, Identification of two GTP-independent alternatively spliced forms of tissue transglutaminase in human leukocytes, vascular smooth muscle, and endothelial cells, FASEB J 21 (2007) 4131-4143.
[96] T.S. Lai, T.F. Slaughter, C.M. Koropchak, Z.A. Haroon, C.S. Greenberg, C-terminal deletion of human tissue transglutaminase enhances magnesium-dependent GTP/ATPase activity, J Biol Chem 271 (1996) 31191-31195.
[97] K.N. Lee, P.J. Birckbichler, M.K. Patterson, Jr., Colorimetric assay of blood coagulation factor XIII in plasma, Clin Chem 34 (1988) 906-910.
[98] Y. Liu, M.P. Patricelli, B.F. Cravatt, Activity-based protein profiling: the serine hydrolases, Proc Natl Acad Sci U S A 96 (1999) 14694-14699.
[99] E. Cernuda-Morollon, E. Pineda-Molina, F.J. Canada, D. Perez-Sala, 15-Deoxy-Delta 12,14-prostaglandin J2 inhibition of NF-kappaB-DNA binding through covalent modification of the p50 subunit, J Biol Chem 276 (2001) 35530-35536.
[100] J.H. Jeon, C.W. Kim, D.M. Shin, K. Kim, S.Y. Cho, J.C. Kwon, K.H. Choi, H.S. Kang, I.G. Kim, Differential incorporation of biotinylated polyamines by transglutaminase 2, FEBS Lett 534 (2003) 180-184.
[101] S. Rao, D.C. Porter, X. Chen, T. Herliczek, M. Lowe, K. Keyomarsi, Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase, Proc Natl Acad Sci U S A 96 (1999) 7797-7802.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46188-
dc.description.abstract組蛋白的轉譯後修飾,與細胞生長和基因表現等多種重要調控功能有關。在由HeLa細胞中純化的組蛋白上,可被精胺抗體偵測到可能是共價修飾的訊號;而多胺類對於細胞生長相關的生理功能亦具有調控地位。與以大腸桿菌表現的重組組蛋白,以及其他由細胞純化、具有與組蛋白類似性質的蛋白質進行比較,我們認為HeLa細胞的組蛋白上具有精胺的共價修飾,並且以TAU/SDS二維電泳以及組蛋白抗體確認在H3、H2B和H4上皆發現此訊號。而轉穀醯胺酶是真核細胞中催化多胺類共價修飾最主要的酵素,我們以實驗確認轉穀醯胺酶能表現於HeLa細胞核中,且組蛋白為轉穀醯胺酶的穀氨醯基受質(acyl donor substrate),並進一步對對HeLa細胞純化組蛋白以及重組組蛋白進行in vitro轉穀醯胺酶催化精胺修飾的實驗,發現在重組的H2B上有發現精胺修飾的狀況,但在in vivo加入轉穀醯胺酶抑制劑cystamine時卻沒有看到修飾程度有明顯的變化。另外,以lovastatin使細胞週期同步化後每四小時分別測定組蛋白的精胺修飾程度,發現在G2/M期的細胞會有較多的精胺修飾。因此,組蛋白的精胺修飾可能存在與某些細胞週期相關的變化有關的生理意義。zh_TW
dc.description.abstractThe post-translational modifications of histones are relevant to many important cellular regulation mechanisms essential for cell proliferation and gene expression. In the histones extracted from HeLa cells, incorporation of spermine, presumably by covalent modification, was detected. Interestingly, these polyamines also play a key role in the regulation of cell proliferation.
From our results, we showed that spermine is covalently attached to extracted histones derived from HeLa cells. Comparing the western blotting results of extracted histones with that of recombinant human core histones and other proteins which have similar features to histones, we detected positive anti-spermine signals in histones H3, H2B and H4. This was further confirmed in our TAU/SDS 2D PAGE data.
Since tissue transglutaminase (TG2) is the main enzyme catalyzing the protein-polyamine incorporations, we confirmed that TG2 expressed in the nuclei of HeLa cells, and that histones were the in vitro acyl donor substrates of TG2. However, from the in vitro transamidation assay, we found that only H2B could be modified. Treatment of HeLa cells with cystamine, a TG2 inhibitor, did not alter the spermine-conjugation levels in core histones.
Furthermore, we synchronized the HeLa cells by lovastatin treatments and harvested the cells every four hours after release of lovastatin inhibition to determine the levels of spermine incorporation. We found that cells in the G2/M phase of the cell cycle had higher levels of spermine incorporation compared to those in the other stages. These results may imply a functional role of the modification of histones by spermine in cell cycle regulations.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:57:16Z (GMT). No. of bitstreams: 1
ntu-99-R97b46004-1.pdf: 4446653 bytes, checksum: 09cab6416cbebd4009ce1bbb52696973 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書
誌謝 i
中文摘要 iii
英文摘要 iv
縮寫表 v
第一章 緒論 1
第一節 多胺類生合成與生理功能 1
第二節 多胺類結合與修飾作用 2
第三節 多胺類對染色體與核酸之影響 2
第四節 多胺類對細胞生長和細胞週期之影響 3
第五節 組蛋白之生化特性、轉譯後修飾與生理功能 4
第六節 轉穀醯胺酶對組蛋白之調控 5
第七節 研究動機與目的 7
第二章 實驗材料與方法 8
第一節 實驗材料 8
第二節 細胞培養 8
第三節 人類細胞內組蛋白之純化 8
第四節 重組人類組蛋白之取得 8
第一項 引子設計 (Primer Designing) 8
第二項 基因組去氧核醣核酸(Genomic DNA)之萃取 9
第三項 聚合酶連鎖反應 (Polymerase Chain Reaction) 9
第四項 基因轉殖 (Cloning) 10
第五項 重組蛋白質表現與純化 10
第五節 蛋白質實驗方法 11
第一項 SDS聚丙烯醯胺凝膠電泳 (SDS Poly-acrylamide Gel Electrophoresis, SDS-PAGE) 11
第二項 Triton酸性尿素聚丙烯醯胺凝膠電泳(Triton-Acid-Urea Poly-acrylamide Gel Electrophoresis, TAU PAGE)與TAU/SDS二維式電泳 12
第三項 蛋白質電泳膠片染色與銀染 13
第四項 BCA蛋白質定量 13
第五項 電泳轉移 (Electrophoretic Transfer) 13
第六項 西方轉漬法 (Western Blotting) 14
第七項 細胞外轉穀醯胺酶之催化反應 (in vitro Tissue Transglutaminase 14
Catalysis) 14
第六節 細胞學實驗方法 14
第一項 繼代培養 14
第二項 細胞核與細胞質之分離 15
第三項 細胞均質液(whole cell lysate)製備 15
第四項 細胞週期之藥物控制與偵測 15
第五項 抑制藥物之處理 16
第六項 免疫螢光染色 (Immunofluorescence) 16
第七節 抗體純化 16
第一項 多株抗體純化 16
第三章 實驗結果 17
第一節 由HeLa細胞純化之組蛋白可被精胺專一性抗體偵測到訊號 17
第二節 精胺修飾於細胞純化之其他類似性質蛋白質及重組組蛋白上未被偵測到 17
第三節 轉穀醯胺酶可在細胞核表現且組蛋白為其受質 18
第四節 重組之組蛋白在in vitro情況下受轉穀醯胺酶催化精胺修飾試驗 19
第五節 調控in vivo轉穀醯胺酶活性可能影響細胞內之組蛋白精胺修飾 19
第六節 Lovastatin不適於細胞同步化(cell synchronization) 20
第七節 組蛋白之精胺修飾與細胞週期有關 21
第八節 Doxorubicin不適於討論組蛋白精胺修飾 21
第四章 討論 23
第一節 HeLa細胞純化之組蛋白具有精胺之修飾 23
第二節 組蛋白上的多胺類修飾位置影響其功能 25
第三節 轉穀醯胺酶可能催化組蛋白的多胺類修飾 26
第四節 組蛋白精胺修飾隨細胞週期而變化 28
第五章 結語 30
第六章 實驗結果圖表 31
圖一 HeLa細胞的組蛋白可被偵測到多胺類修飾之訊號 31
圖二 HeLa細胞組蛋白上的多胺類修飾訊號在其他具類似化學性質之蛋白質與重組組蛋白尚皆未發現 33
圖三 In vitro轉穀醯胺酶催化重組組蛋白之精胺修飾 36
圖四 HeLa細胞受cystamine處理後組蛋白修飾程度無明顯改變 37
圖五 以lovastatin處理HeLa細胞對細胞週期影響 38
圖六 組蛋白之精胺修飾程度與細胞週期關係 41
圖七 以doxorubicin處理細胞並偵測精胺修飾程度之差異 43
參考文獻 44
附錄 53
附圖一 三種多胺類putrecine,spermidine和spermine之結構及pKa值 53
附圖二 哺乳類動物之多胺類生合成與代謝途徑 54
附圖三 轉穀醯胺酶催化之轉胺作用機制 55
附圖四 多胺類參與真核細胞生長相關之訊息傳遞 57
附圖五 多胺類參與原核與真核細胞轉譯與細胞生長途徑 58
附圖六 組蛋白八聚體與核小體結構 61
附圖七 組蛋白蛋白質序列 62
附圖八 組蛋白N端之轉錄後修飾 64
附圖九 轉穀醯胺酶催化之組蛋白連結(cross-link) 65
附圖十 人類組蛋白純化方法 66
附圖十一 Lovastatin影響細胞週期之機制 67
附表一 轉穀醯胺酶家族 68
dc.language.isozh-TW
dc.subject細胞週期zh_TW
dc.subject組蛋白zh_TW
dc.subject多胺類zh_TW
dc.subject轉穀醯胺&#37238zh_TW
dc.subject共價修飾zh_TW
dc.subjecttissue transglutaminaseen
dc.subjectcell cyleen
dc.subjectcovalent modificationen
dc.subjectpolyaminesen
dc.subjecthistonesen
dc.title轉穀醯胺酶催化之HeLa細胞中組蛋白多胺類修飾zh_TW
dc.titleTissue Transglutaminase-induced Histones Polyamination in HeLa Cellsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃銓珍,李明亭,陳宏文,張茂山
dc.subject.keyword組蛋白,多胺類,轉穀醯胺&#37238,共價修飾,細胞週期,zh_TW
dc.subject.keywordhistones,polyamines,tissue transglutaminase,covalent modification,cell cyle,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2010-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
4.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved