Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46184
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳世雄(Shih-Hsiung Wu)
dc.contributor.authorKai-Jay Yangen
dc.contributor.author楊凱傑zh_TW
dc.date.accessioned2021-06-15T04:57:05Z-
dc.date.available2020-12-19
dc.date.copyright2010-08-05
dc.date.issued2010
dc.date.submitted2010-07-28
dc.identifier.citation(1)Madigan, M. T., Marrs, B. L. (1997) Extremophiles.
Sci. Am. 276, 82-87.
(2)Stetter, K. O. (1998) In Extremophiles:Microbial Life in
Extreme environments. Wiley-Liss:New York.
(3)Stetter, K. O. (1999) Extremophiles and their adaptation
to hot environments. FEBS Lett. 452, 22-25.
(4)Brock, T. D. (1986) Thermophiles: General, Molecular,
and Applied Microbiology. Wiley:New York.
(5)Brock, T. D., Freeze, H. (1987) Thermophilic
Microorganism and Life at High Temperature. Spinger-
Verlag:New York.
(6)Brock, T. D., Freeze, H. (1969) Thermus aquaticus gen.
n. and sp. n., a nonsporulating extreme thermophile. J.
Bacteriol. 98, 289-297.
(7)Quinn, P. J., Williams, W. P. (1978) Plant lipids and
their role in membrane function. Prog. Biophys. Mol.
Biol. 34, 109-179.
(8)Sastry, P. S. (1974) Glycosyl glycerides. Adv. Lipid
Res. 12, 251-310.
(9)Oshima, M., Yamakawa, T. (1974) Chemical structure of a
novel glycolipid from an extreme thermophile,
Flavobacterium thermophilum. Biochemistry 13, 1140-1146.
(10)Pasciak, M., Holst, O., Lindner, B., Mordarska, H.,
Gamian, A. (2003) Novel bacterial polar lipids
containing ether-linked alkyl chains, the structures
and biological properties of the four major glycolipids
from Propionibacterium propionicum PCM 2431 (ATCC
14157T). J. Biol. Chem. 278, 3948-3956.
(11)Pasciak, M., Holst, O., Lindner, B., Mierzchala, M.,
Grzegorzewicz, A., Mordarska, H., Gamian, A. (2004)
Structural and serological characterization of the
major glycolipid from Rothia mucilaginosa. Biochim.
Biophys. Acta 1675, 54-61.
(12)Manca, M. C., Nicolaus, B., Lanzotti, V., Trincone, A.,
Gambacorta, A., Peter, K. J. Egge, H., Huber, R.,
Stetter, K. O. (1992) Glycolipids from Thermotoga
maritima, a hyperthermophilic microorganism belonging
to Bacteria domain. Biochim. Biophys. Acta 1124,
249-252.
(13)Huber, R., Wilharm, T., Huber, D., Trincone, A.,
Burggraf, S., König, H., Rachel,
R., Rockinger, I., Fricke, H., Stetter, K. O. (1992)
Aquifex pyrophilus gen.nov. sp.nov., represents a novel
group of marine hyperthermophilic hydrogen-oxidizing
bacteria. Syst. Appl. Microbiol. 15, 340-351.
(14)Langworthy, T. A., Holzer, G.,Zeikus, J. G., Tornabene,
T. G. (1983) Iso- and anteiso-branched glycerol
diethers of the thermophilic anaerobe.
Thermodesulfotobacterium commune. Syst. Appl.
Microbiol. 4, 1-17
(15)De Rosa, M., Gambacorta, A., Huber, R., Lanzotti, V.,
Nicolaus, B., Stetter, K. O. (1989) Lipid structures in
Thermotoga maritima. In: Da Costa MS, Duarte JC,
Williams RAD (eds) Microbiology of extreme environments
and its potential for biotechnology. Elsevier,
Amsterdam New York
(16)Wait, R., Carreto, L., Nobre, M. F., Ferreira, A. M.,
da Costa, M. S. (1997) Characterization of novel
long-chain 1,2-diols in Thermus species and
demonstration that Thermus strains contain both
glycerol-linked and diol-linked glycolipids. J.
Bacteriol. 179, 6154-6162.
(17)Prado, A., da Costa, M. S., Laynez, J., Madeira, V. M.
(1988) Effect of Growth Temperature on Lipid
Composition of two Strains Thermus sp.. J. Gen.
Microbiol., 134, 1653-1660.
(18)Donato, M. M., Seleiro, E. A., da Costa, M. S. (1990)
Polar lipid and fatty acid composition of strains of
the genus Thermus. Syst. Appl. Microbiol. 13,234-239.
(19)Yang, F. L., Lu, C. P., Chen, C. S. Chen, M. Y., Hsiao,
H. L., Su, Y., Tsay, S. S., Zou, W., Wu, S. H. (2004)
Structural determination of the polar
glycoglycerolipids from thermophilic bacteria
Meiothermus taiwanensis. Eur. J. Biochem. 271,4545-4551.
(20)Lu, T. L., Chen, C. S., Yang, F. L., Fung, J. M., Chen,
M. Y., Tsay, S. S., Li, J., Zou, W., Wu, S. H. (2004)
Structure of a major glycolipid from Thermus oshimai
NTU-063. Carbohydr. Res. 339, 2593-2598.
(21)Price, N. P., (2008) Permethylation linkage analysis
techniques for residual carbohydrates. Appl Biochem.
Biotechnol. 148, 271-276.
(22)Hakomori, S. I. (1964) A rapid permethylation of
glycolipid, and polysaccharide catalyzed by
methylsulfinyl carbanion in dimethyl sulfoxide. J.
Biochem. 55, 205-208.
(23)Sandford, P. A., Conrad, H. E. (1966) The structure of
the aerobacter aerogenes A3(S1) polysaccharide. I. A
reexamination using improved procedures for methylation
analysis. Biochemistry 5, 1508-1517.
(24)Ray, P. H., White, D. C., Brock, T. D. (1971) Effect of
growth temperature on the lipid composition of Thermus
aquaticus. J. Bacteriol. 108, 227-235.
(25)Williams, R.A.D., Da Costa, M.S., (1992) The genus
Thermus and related microorganisms. In: Balows, A.,
Truper, H. G., Dworkin, M., Harder, W., Schleifer, K.
H. (eds.) The Prokaryotes, 2nd edn., 3745-3753,
Springer, New York.
(26)Ferreira, A. M., Wait, R., Nobre, M. F., Costa, M. S.
(1999) Characterization of glycolipids from Meiothermus
spp.. Microbiology 145, 1191-1199.
(27)Silva, Z., Borges, N., Martins, L. O., Wait, R., Da
Costa, M. S., Santos, H. (1999) Combined effect of the
growth temperature and salinity of the medium of the
accumulation of compatible solutes by Rhodothermus
marinus and Rhodothermus obamensis. Extremophiles 3,
163-172.
(28)Forterre, P., Bouthier De La Tour, C.; Philippe, H.;
Duguet, M. (2000) Reverse gyrase from
hyperthermophiles: probable transfer of a
thermoadaptation trait from archaea to bacteria. Trends
Genet. 16, 152-154.
(29)Lesley, S. A., Kuhn, P., Godzik, A., Deacon, A. M.,
Mathews, I., Kreusch, A., Spraggon, G., Klock, H. E.,
McMullan, D., Shin, T., Vincent, J., Robb, A., Brinen,
L. S., Miller, M. D., McPhillips, T. M., Miller, M. A.,
Scheibe, D., Canaves, J. M., Guda, C., Jaroszewski, L.,
Selby, T. L., Elsliger, M. A., Wooley, J., Taylor, S.
S., Hodgson, K. O., Wilson, I. A., Schultz, P. G.,
Stevens, R. C. (2002) Structural genomics of the
Thermotoga maritima proteome implemented in a
high-throughput structure determination pipeline Proc.
Natl. Acad. Sci. USA 99, 11664-11669.
(30)De Groot, A., Chapon, V., Servant, P., Christen, R.,
Saux, M. F., Sommer, S., Heulin, T. (2005) Deinococcus
deserti sp. nov., a gamma-radiation-tolerant bacterium
isolated from the sahara desert. Int. J. Syst. Evol.
Microbiol. 55, 2441-2446.
(31)Dutronc, Y., Porcelli, S. A. (2002) The CD1 family and
T cell recognition of lipid antigens. Tissue Antigens
60, 337-353.
(32)Parekh, V. V., Wilson, M. T., Van Kaer, L. (2005)
iNKT-cell responses to glycolipids. Crit. Rev. Immunol.
25, 183-213.
(33)Krishnan, L., Dicaire, C. J., Patel, G. B., Sprott, G.
D. (2000) Archaeosome vaccine adjuvants induce strong
humoral, cell-mediated and memory responses: comparison
to conventional liposomes and alum. Infect. Immun. 68,
54-63.
(34)Kinjo, Y., Wu, D., Kim, G., Xing, G. W., Poles, M. A.,
Ho, D. D., Tsuji, M., Kawahara, K., Wong, C. H.,
Kronenberg, M. (2005) Recognition of bacterial
glycosphingolipids by natural killer T cells. Nature
434, 520-525.
(35)Kinjo, Y., Tupin, E., Wu, D., Fujio, M., Garcia-
Navarro, R., Benhnia, M. R., Zajonc, D. M.,
Ben-Menachem, G., Ainge, G. D., Painter, G. F.,
Khurana, A., Hoebe, K., Behar, S. M., Beutler, B.,
Wilson, I. A., Tsuji, M., Sellati, T. J., Wong, C. H.,
Kronenberg, M. (2006) Natural killer T cells recognize
diacylglycerol antigens from pathogenic bacteria. Nat.
Immunol. 7, 978-986.
(36)Stetson, D. B., Mohrs, M., Reinhardt, R. L., Baron, J.
L., Wang, Z. E., Gapin, L., Kronenberg, M., Locksley,
R. M. (2003) Constitutive cytokine mRNAs mark natural
killer (NK) and NK T cells poised for rapid effector
function. J. Exp. Med. 198, 1069-1076.
(37)Bruno, A., Rossi, C., Marcolongo, G., Di Lena, A.,
Venzo, A., Berrie, C. P., Corda, D. (2005) Selective in
vivo anti-inflammatory action of the galactolipid
monogalactosyldiacylglycerol. Eur. J. Pharmacol. 524,
159-168.
(38)Phoebe, C. H. Jr., Combie, J., Albert, F. G., Van Tran,
K., Cabrera, J., Correira, H. J., Guo, Y., Lindermuth,
J., Rauert, N., Galbraith, W., Selitrennikoff, C. P.
(2001) Extremophilic organisms as an unexplored source
of antifungal compounds. J. Antibiot. (Tokyo) 54, 56-65.
(39)Carreto, L.; Wait, R.; Nobre, M. F.; da Costa, M. S.
(1996) Determination of the structure of a novel
glycolipid from Thermus aquaticus 15004 and
demonstration that hydroxy fatty acids are amide linked
to glycolipids in Thermus spp. J. Bacteriol. 178,
6479-6486.
(40)Albuquerque, L., Ferreira, C., Tomaz, D., Tiago, I.,
Veríssimo, A., Da Costa, M. S., Nobre, M. F. (2009)
Meiothermus rufus sp. nov., a new slightly thermophilic
red-pigmented species and emended description of the
genus Meiothermus. Syst. Appl. Microbiol. 32, 306-313.
(41)Yang, Y. L., Yang, F. L., Jao, S. C., Chen, M. Y.,
Tsay, S. S., Zou, W., Wu, S. H. (2006) Structural
elucidation of phosphoglycolipids from strains of the
bacterial thermophiles Thermus and Meiothermus. J.
Lipid Res. 47, 1823-1832.
(42)Yang, F. L., Hua, K. F., Yang, Y. L., Zou, W., Chen, Y.
P., Liang, S. M., Hsu, H. Y., Wu, S. H. (2008)
TLR-independent induction of human monocyte IL-1 by
phosphoglycolipids from thermophilic bacteria.
Glycoconj. J. 25, 427-439.
(43)Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E.,
Karandikar, M., Berman, K., Cobb, M. H. (2001) Mitogen-
activated protein (MAP) kinase pathways: regulation and
physiological functions. Endocr Rev 22, 153-183.
(44)Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko,
Y., Motoki, K., Ueno, H., Nakagawa, R., Sato, H.,
Kondo, E., Koseki, H., Taniguchi, M. (1997)
CD1d-restricted and TCR-mediated activation of valpha14
NKT cells by glycosylceramides. Science 278, 1626-1629.
(45)Zeng, Z., Castano, A. R., Segelke, B. W., Stura, E. A.,
Peterson, P. A., Wilson, I. A. (1997) Crystal structure
of mouse CD1: An MHC-like fold with a large hydrophobic
binding groove. Science 277, 339-345.
(46)Prigozy, T. I., Naidenko, O., Qasba, P., Elewaut, D.,
Brossay, L., Khurana, A., Natori, T., Koezuka, Y.,
Kulkarni, A., Kronenberg, M. (2001) Glycolipid antigen
processing for presentation by CD1d molecules. Science
291, 664-667.
(47)Miyamoto, K., Miyake, S., Yamamura, T. (2001) A
synthetic glycolipid prevents autoimmune
encephalomyelitis by inducing TH2 bias of natural
killer T cells. Nature 413, 531-534.
(48)Chiodoni, C., Stoppacciaro, A., Sangaletti, S., Gri,
G., Cappetti, B., Koezuka, Y., Colombo, M. P. (2001)
Different requirements for alpha-galactosylceramide and
recombinant IL-12 antitumor activity in the treatment
of C-26 colon carcinoma hepatic metastases. Eur. J.
Immunol. 31, 3101-3110.
(49)Sharp, R., and Williams, R. (1995) Thermus species. In
biotechnology Handbooks. T. Atkinson and R. F.
Sherwood, editors. Plenum, 143-148, New York
(50)Anderson, R., Huang, Y. (1992) Fatty acids are
precursors of alkylamines in Deinococcus radiodurans.
J. Bacteriol. 174, 7168-7173.
(51)Griffiths, E., Gupta, R. S. (2004) Distinctive protein
signatures provide molecular markers and evidence for
the monophyletic nature of the deinococcus-thermus
phylum. J. Bacteriol. 186, 3097-3107.
(52)Iida-Tanaka, N., Fukase, K., Utsumi, H., Ishizuka, I.
(2000) Conformational studies on a unique bis-sulfated
glycolipid using NMR spectroscopy and molecular
dynamics simulations. Eur. J. Biochem. 267, 6790-6797.
(53)Iida-Tanaka, N., Hikita, T., Hakomori, S. I., Ishizuka,
I.(2002) Conformational studies of a novel cationic
glycolipid, glyceroplasmalopsychosine, from bovine
brain by NMR spectroscopy. Carbohydr. Res. 337,
1775-1779.
(54)Renou, J. P., Giziewicz, J. B., Smith, I. C. P.,
Jarrell, H. C. (1989) Glycolipid membrane surface
structure: orientation, conformation, and motion of a
disaccharide headgroup. Biochemistry 28, 1804-1814.
(55)Jarrell, H. C., Wand, A. J., Giziewicz, J. B., Smith,
I. C. P. (1987) The dependence of glyceroglycolipid
orientation and dynamics on head-group structure.
Biochim. Biophys. Acta 897, 69-82.
(56)Chen, M. Y., Lin, G. H., Lin, Y. T., Tsay, S. S. (2002)
Meiothermus taiwanensis
sp. nov., a novel filamentous, thermophilic species
isolated in Taiwan. Int. J. Syst. Evol. Microbiol. 52,
1647-1654.
(57)Ha, S. N., Madsen, L. J., Field, M., Brady, J. W.
(1988) A revised potential-energy surface for molecular
mechanics studies of carbohydrates. Carbohydr. Res.
180, 207-221.
(58)Acquotti, D., Poppe, L., Dabrowski, J., Von der Lieth,
C. W., Sonnino, S., Tettamanti, G. (1990) Three-
dimensional structure of the oligosaccharide chain of
GM1 ganglioside revealed by a distance-mapping
procedure: a rotating and laboratory frame nuclear
overhauser enhancement investigation of native
glycolipid in dimethyl sulfoxide and in water-
dodecylphosphocholine solutions. J. Am. Chem. Soc.
112, 7772-7778.
(59)Poppe, L., Von der Lieth, C. W., Dabrowski, J. (1990)
Conformation of the glycolipid globoside head group in
various solvents and in the micelle-bound state. J. Am.
Chem. Soc. 112, 7762-7771.
(60)Nimmanpipug, P., Tashiro, K., Rangsiman, O. (2006)
Factors governing the three-dimensional hydrogen-bond
network structure of poly(m-phenylene isophthalamide)
and a series of its model compounds (4): similarity in
local conformation and packing structure between a
complicated three-arm model compound and the linear
model compounds. J. Phys. Chem. 110, 20858-20864.
(61)Levery, S. B. (1991) 1H-NMR study of GM2 ganglioside:
evidence that an interresidue amide-carboxyl hydrogen
bond contributes to stabilization of a preferred
conformation. Glycoconj. J. 8, 484-492.
(62)Vicente, V., Martin, J., Jimenez-Barbero, J., Chiara,
J. L., Vicent, C. (2004) Hydrogen-bonding
cooperativity: using an intramolecular hydrogen bond to
design a carbohydrate derivative with a cooperative
hydrogen-bond donor centre. Chemistry 10, 4240-4251.
(63)Poppe, L., Van Halbeek, H. (1991) Nuclear magnetic
resonance of hydroxyl and amido, protons of
oligosaccharides in aqueous solution: evidence for a
strong intramolecular hydrogen bond in sialic acid
residues. J. Am. Chem. Soc. 113, 363-365.
(64)Blundell, C. D., Almond, A. (2007) Temperature
dependencies of amide 1H- and 15N-chemical shifts in
hyaluronan oligosaccharides. Magn. Reson. Chem. 45,
430-433.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46184-
dc.description.abstract本論文的宗旨,在研究醣甘油脂藉由何種機制穩定細胞外膜,研究的素材為本實驗室所發現之嗜熱菌Meiothermus taiwanensis NTU-220外膜上的醣甘油脂,其主要的醣序列為α1,6-Galp-β1,6-Galp-β1,2-GalpNAc-α1,1-Glcp-glycerol,由文獻上的研究顯示,醣甘油脂的比例與環境溫度有密切的關係,隨著嗜熱菌生長環境溫度的增加,醣甘油脂的數量也隨之增加,然而,醣甘油脂藉由何種機制穩定細胞外膜,目前並無詳細報導,研究此醣甘油脂的三維結構將有助於了解其作用及功能。借由異核氫-碳J-HMBC脈衝序列取得橫跨醣苷鍵的3J-氫碳偶合常數,同時,搭配氫-碳 3J-Karplus方程式,計算出醣苷鍵二面角φ和ψ角度,搭配NOEs光譜所取的距離極限,計算模擬醣甘油脂於d6-二甲基亞砜溶液中的兩種可能構型。在另ㄧ方面,由氫核長距離同核位移相關譜(Long-Range COSY)及化學位移溫度變換係數等實驗所推測的氧-氫…氧氫鍵,均無法支持及佐證此兩種構型存在之可能性。zh_TW
dc.description.abstractThis thesis was aimed to study the solution structure of glycoglycerolipid from Meiothermus taiwanensis NTU-220. The primary sequence of this glycoglycerolipid was studied and reported in this group as following: α1,6-Galp-β1,6-Galp- β1,2-GalpNAc-α1,1-Glcp-glycerol. According to previously reported, the amount of glycolipid distributed on the cell membrane is increasing with the raising temperature. This result indicated that those glycolipids might play as chaperon toward the maintenance of cell membrane integrity, and this field is still fully understudied. Therefore, we considered that study the 3D structure of oligo-glycolipid could provide the initial understanding of possible biological property and function. Combined the distance restraints from NOESY spectra and the exocyclic φ andψ torsional restraints from heteronuclear 1H-13C 3J-HMBC experiment with NMR solvent DMSO-d6, the molecular simulation provided two possible structures. We also attempt to predict the possible O-H…O hydrogen bonds by temperature coefficient and long-range COSY experiments, however, those hydrogen bonds could not directly be explained and fitted into the simulated structures, reasonablely.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:57:05Z (GMT). No. of bitstreams: 1
ntu-99-R97b46027-1.pdf: 1512879 bytes, checksum: 6cafaa082b57f743adab13a6fe2fa27a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
口試委員會審定書 ……………………………………………………II
致謝……………………………………………………………………III
中文摘要……………………………………………………………… VI
Abstract………………………………………………………………VII
Abbreviations………………………………………………………VIII
List of Figures and Tables………………………………………IX
1.Introduction
1.1 Thermophilic bacteria…………………………………………1
1.2 Glycolipids from thermophilic bacteria………………3
1.3 Glycolipids and its biological significant…………6
1.4 Immunogenic activities of glycolipids ………………8
1.5 Objectives …………………………………………………10
2. Materials and Methods
2.1 Materials
2.1.1 Bacterial strain………………………………………11
2.1.2 Medium for bacterial culture………………………11
2.1.3 Chemicals and reagents………………………………12
2.1.4 Instruments ……………………………………………12

2.2 Methods
2.2.1 Flow chart of experiments …………………………13
2.2.2 Bacterial growth condition…………………………14
2.2.3 Polar lipid extraction and GL1M isolation ……14
2.2.4 Monosaccharide composition analysis by
GC-MS ……………………………………………………15
2.2.5 NMR spectra analysis…………………………………17
2.2.6 Restrained simulated annealing calculation……18
3. Results and Discussion
3.1 Isolation of glycoglycerolipid GL1M and GC/MS
analysis …………………………………………………………19
3.2 Chemical shift assignment of glycoglycerolipid GL1M in
DMSO-d6……………………………………………………………20
3.3 NOEs and torsion angles of glycoglycerolipid GL1M in
DMSO-d6……………………………………………………………22
3.4 Molecular simulation of Glycoglycerolipid GL1M DMSO-d6
solution …………………………………………………………24
3.5 Chemical Shift Assignment and NOEs of Headgroup of GL1M
in SDS-d25 Micelles Solution ………………………………26
3.6 Evidence from NMR contradict the modeling
results……………………………………………………………27
4. Conclusion ………………………………………………………30
Figures and Tables …………………………………………………31
References ……………………………………………………………49
Appendix: Restraints for Modeling simulaiton
dc.language.isoen
dc.subject分子模擬zh_TW
dc.subject醣脂質zh_TW
dc.subject醣甘油脂zh_TW
dc.subject3J-氫碳偶合常數zh_TW
dc.subjectGlycoglycerolipiden
dc.subjectGlycolipiden
dc.subject3J H-C coupling constanten
dc.subjectMolecular simualtionen
dc.title嗜熱菌Meiothermus taiwanensis醣甘油脂分子結構及模擬研究zh_TW
dc.titleStudy Molecular Structure and NMR-based Simulation of the Glycoglycerolipid from Meiothermus taiwanensis NTU-220en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳金榜(Chin-Pan Chen),張定國(Ding-Kwo Chang)
dc.subject.keyword醣脂質,醣甘油脂,分子模擬,3J-氫碳偶合常數,zh_TW
dc.subject.keywordGlycolipid,Glycoglycerolipid,Molecular simualtion,3J H-C coupling constant,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2010-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved