Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4617
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐振哲(Cheng-Che Hsu)
dc.contributor.authorWei-Shang Zsengen
dc.contributor.author曾暐升zh_TW
dc.date.accessioned2021-05-14T17:44:11Z-
dc.date.available2020-07-31
dc.date.available2021-05-14T17:44:11Z-
dc.date.copyright2015-07-31
dc.date.issued2015
dc.date.submitted2015-07-30
dc.identifier.citation1. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn and R. F. Hicks, 'The atmospheric-pressure plasma jet: A review and comparison to other plasma sources.,' IEEE Trans. Plasma Sci., 26 (6), 1685-1694 (1998).
2. M. A. Lieberman and A. J. Lichtenberg, 'Principles of Plasma Discharges and Materials Processing,' New York: Wiley, (1994).
3. A. L. Thomann, J. P. Salvetat, Y. Breton, C. Andreazza-Vignolle and P. Brault, 'Thermal stability of metal nanoclusters formed by low-pressure plasma sputtering,' Thin Solid Films, 428 (1-2), 242-247 (2003).
4. P. Fauchais and A. Vardelle, 'Thermal plasmas,' IEEE Trans. Plasma Sci., 25 (6), 1258-1280 (1997).
5. R.W.Smith., D.Wei. and D.Apelian., 'Thermal plasma materials processing—Applications and opportunities,' Plasma Chem. Plasma Process. , vol.9,no. 1, p.135S-165S (1989).
6. M. Goldman and R. S. Sigmond, 'Corona and insulation,' Ieee Transactions on Electrical Insulation, 17 (2), 90-105 (1982).
7. B. Eliasson and U. Kogelschatz, 'Nonequilibrium volume okasma chemical-process,' IEEE Trans. Plasma Sci., 19 (6), 1063-1077 (1991).
8. J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, I. Henins, R. F. Hicks and G. S. Selwyn, 'Etching materials with an atmospheric-pressure plasma jet,' Plasma Sources Sci. Technol., 7 (3), 282-285 (1998).
9. J. Salge, 'Plasma-assisted depositon at atmospheric pressure,' Surf. Coat.Technol, 80, 1-7 (1996).
10. T. C. Tsai and D. Staack, 'Low-temperature polymer deposition in ambient air using a floating-electrode dielectric barrier discharge jet,' Plasma Process. Polym., 8 (6), 523-534 (2011).
11. J. Huang, W. Chen, H. Li, X. Q. Wang, G. H. Lv, M. L. Khosa, M. Guo, K. C. Feng, P. Y. Wang and S. Z. Yang, 'Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle,' J. Appl. Phys., 109 (5), 053305 (2011).
12. V. Gupta, T. Nakajima, Y. Ohzawa and H. Iwata, 'Electrochemical characteristics and structures of surface-fluorinated graphites with different particle sizes for lithium ion secondary batteries,' Journal of Fluorine Chemistry, 112 (2), 233-240 (2001).
13. T. Nakajima, V. Gupta, Y. Ohzawa, M. Koh, R. N. Singh, A. Tressaud and E. Durand, 'Electrochemical behavior of plasma-fluorinated graphite for lithium ion batteries,' J. Power Sources, 104 (1), 108-114 (2002).
14. H. Q. Li and H. S. Zhou, 'Enhancing the performances of Li-ion batteries by carbon-coating: present and future,' Chem. Commun., 48 (9), 1201-1217 (2012).
15. W. C. Lai, J. T. Chen and Y. Y. Yang, 'Optoelectrical and low-frequency noise characteristics of flexible ZnO-SiO2 photodetectors with organosilicon buffer layer,' Opt. Express, 21 (8), 9643-9651 (2013).
16. E. Sun, F. H. Su, Y. T. Shih, H. L. Tsai, C. H. Chen, M. K. Wu, J. R. Yang and M. J. Chen, 'An efficient Si light-emitting diode based on an n-ZnO/SiO2-Si nanocrystals-SiO2/p-Si heterostructure,' Nanotechnology, 20 (44)(2009).
17. J. S. Jie, G. Z. Wang, Y. M. Chen, X. H. Han, Q. T. Wang, B. Xu and J. G. Hou, 'Synthesis and optical properties of well-aligned ZnO nanorod array on an undoped ZnO film,' Appl. Phys. Lett., 86 (3)(2005).
18. B. Deb, V. Kumar, T. L. Druffel and M. K. Sunkara, 'Functionalizing titania nanoparticle surfaces in a fluidized bed plasma reactor,' Nanotechnology, 20 (46)(2009).
19. G. L. Chen, S. H. Chen, M. Y. Zhou, W. R. Feng, W. C. Gu and S. Z. Yang, 'Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification,' J. Phys. D-Appl. Phys., 39 (24), 5211-5215 (2006).
20. L. H. Song, S. H. Park, S. H. Jung, S. D. Kim and S. B. Park, 'Synthesis of polyethylene glycol-polystyrene core-shell structure particles in a plasma-fluidized bed reactor,' Korean J. Chem. Eng., 28 (2), 627-632 (2011).
21. G. L. Chen, S. H. Chen, W. R. Feng, W. X. Chen and S. Z. Yang, 'Surface modification of the nanoparticles by an atmospheric room-temperature plasma fluidized bed,' Appl. Surf. Sci., 254 (13), 3915-3920 (2008).
22. G. L. Chen, M. Y. Zhou, S. H. Chen, G. H. Lv and J. M. Yao, 'Nanolayer biofilm coated on magnetic nanoparticles by using a dielectric barrier discharge glow plasma fluidized bed for immobilizing an antimicrobial peptide,' Nanotechnology, 20 (46)(2009).
23. K. S. Babu, A. R. Reddy, C. Sujatha and K. V. Reddy, 'Optimization of UV emission intensity of ZnO nanoparticles by changing the excitation wavelength,' Mater. Lett., 99, 97-100 (2013).
24. Z. P. Fu, B. F. Yang, L. Li, W. W. Dong, C. Jia and W. Wu, 'An intense ultraviolet photoluminescence in sol-gel ZnO-SiO2 nanocomposites,' J. Phys.-Condes. Matter, 15 (17), 2867-2873 (2003).
25. S. Panigrahi and D. Basak, 'Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection,' Nanoscale, 3 (5), 2336-2341 (2011).
26. J. B. B. José Antonio Alves Júnior, 'The Behavior of Zeta Potential of Silica Suspensions,' new journal of glass and ceramics, 4, 29-37 (2014).
27. A. M. Ali, A. A. Ismail, R. Najmy and A. Al-Hajry, 'Annealing effects on zinc oxide-silica films prepared by sol-gel technique for chemical sensing applications,' Thin Solid Films, 558, 378-384 (2014).
28. A. Rahm, G. W. Yang, M. Lorenz, T. Nobis, J. Lenzner, G. Wagner and M. Grundmann, 'Two-dimensional ZnO : Al nanosheets and nanowalls obtained by Al2O3-assisted carbothermal evaporation,' Thin Solid Films, 486 (1-2), 191-194 (2005).
29. R. C. Wang, C. P. Liu, J. L. Huang and S. J. Chen, 'Single-crystalline AlZnO nanowires/nanotubes synthesized at low temperature,' Appl. Phys. Lett., 88 (2)(2006).
30. L. W. Yang, X. L. Wu, G. S. Huang, T. Qiu and Y. M. Yang, 'In situ synthesis of Mn-doped ZnO multileg nanostructures and Mn-related Raman vibration,' J. Appl. Phys., 97 (1)(2005).
31. A. M. Ali, A. A. Ismail, R. Najmy and A. Al-Hajry, 'Preparation and characterization of ZnO-SiO2 thin films as highly efficient photocatalyst,' J. Photochem. Photobiol. A-Chem., 275, 37-46 (2014).
32. T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin and I. C. Chen, 'ZnO nanowire-based CO sensors prepared on patterned ZnO : Ga/SiO2/Si templates,' Sens. Actuator B-Chem., 125 (2), 498-503 (2007).
33. S. Krishnamoorthy, A. A. Iliadis, T. Bei and G. P. Chrousos, 'An interleukin-6 ZnO/SiO2/Si surface acoustic wave biosensor,' Biosens. Bioelectron., 24 (2), 313-318 (2008).
34. W. C. Lai, J. T. Chen and Y. Y. Yang, 'ZnO-SiO2 solar-blind photodetectors on flexible polyethersulfone substrate with organosilicon buffer layer,' Appl. Phys. Lett., 102 (19),093502(2013).
35. Z. P. Fu, B. F. Yang, L. Li, W. W. Dong, C. Jia and W. Wu, 'An intense ultraviolet photoluminescence in sol-gel ZnO-SiO2 nanocomposite,' J. Phys.-Condes. Matter, 15 (17), 2867-2873 (2003).
36. P. Jiang, J. F. Bertone, K. S. Hwang and V. L. Colvin, 'Single-crystal colloidal multilayers of controlled thickness,' Chem. Mat., 11 (8), 2132-2140 (1999).
37. L. Spanhel. and M. A. Anderson., 'Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,' J. Am. Chem. Soc., 113 (8), 2826-2833 (1991).
38. M. N. Mohammedi, J. L. Leuenberger and J. Amouroux, 'Desulfurization study of hydrocarbon molecules by plasma process for gasoil applications,' Abstr. Pap. Am. Chem. Soc., 211, 148-full(1996).
39. S. Weber, C. Briens, F. Berruti, E. Chan and M. Gray, 'Effect of agglomerate properties on agglomerate stability in fluidized beds,' Chem. Eng. Sci., 63 (17), 4245-4256 (2008).
40. J. G. Buijnsters, R. Gago, I. Jimenez, M. Camero, F. Agullo-Rueda and C. Gomez-Aleixandre, 'Hydrogen quantification in hydrogenated amorphous carbon films by infrared, Raman, and x-ray absorption near edge spectroscopies,' J. Appl. Phys., 105 (9), 093510 (2009).
41. C. Casiraghi, A. C. Ferrari and J. Robertson, 'Raman spectroscopy of hydrogenated amorphous carbons,' Phys. Rev. B, 72 (8), 085401 (2005).

42. C. Casiraghi, F. Piazza, A. C. Ferrari, D. Grambole and J. Robertson, 'Bonding in hydrogenated diamond-like carbon by Raman spectroscopy,' Diam. Relat. Mat., 14 (3-7), 1098-1102 (2005).
43. P. K. Chu and L. H. Li, 'Characterization of amorphous and nanocrystalline carbon films,' Mater. Chem. Phys., 96 (2-3), 253-277 (2006).
44. A. C. Ferrari and J. Robertson, 'Interpretation of Raman spectra of disordered and amorphous carbon,' Phys. Rev. B, 61 (20), 14095-14107 (2000).
45. S. M. Lee, J. Won, S. Yim, S. J. Park, J. Choi, J. Kim, H. Lee and D. Byun, 'Effect of deposition temperature and thermal annealing on the dry etch rate of a-C: H films for the dry etch hard process of semiconductor devices,' Thin Solid Films, 520 (16), 5284-5288 (2012).
46. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn and R. F. Hicks, 'The atmospheric-pressure plasma jet: A review and comparison to other plasma sources,' IEEE Trans. Plasma Sci., 26 (6), 1685-1694 (1998).
47. T. Sharda, M. Umeno, T. Soga and T. Jimbo, 'Growth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth,' Appl. Phys. Lett., 77 (26), 4304-4306 (2000).
48. F. Tuinstra and J. L. Koenig, 'Raman spectrum of graphite,' J. Chem. Phys., 53 (3), 1126-1130 (1970).
49. A. Calzolari and R. Di Felice, 'Surface functionalization through adsorption of organic molecules,' J. Phys.-Condes. Matter, 19 (30)(2007).
50. H. Mahfuz, M. Hasan, V. Dhanak, G. Beamson, J. Stewart, V. Rangari, X. Wei, V. Khabashesku and S. Jeelani, 'Reinforcement of nylon 6 with functionalized silica nanoparticles for enhanced tensile strength and modulus,' Nanotechnology, 19 (44)(2008).
51. H. S. Cho, D. L. Shi, Y. Guo, J. Lian, Z. F. Ren, B. Poudel, Y. Song, J. L. Abot, D. Singh, J. Routbort, L. M. Wang and R. C. Ewing, 'Enhanced thermal stability of carbon nanotubes by plasma surface modification in Al(2)O(3) composites,' J. Appl. Phys., 104 (7)(2008).
52. R. Y. Hong, J. H. Li, L. L. Chen, D. Q. Liu, H. Z. Li, Y. Zheng and J. Ding, 'Synthesis, surface modification and photocatalytic property of ZnO nanoparticles,' Powder Technol., 189 (3), 426-432 (2009).
53. F. F. Shi, 'Recent advances in polymer thin films prepared by plasma polymerization Synthesis, structural characterization, properties and applications,' Surf. Coat. Technol., 82 (1-2), 1-15 (1996).
54. L. Kolodziejczyk, D. Martinez-Martinez, T. C. Rojas, A. Fernandez and J. C. Sanchez-Lopez, 'Surface-modified Pd nanoparticles as a superior additive for lubrication,' J. Nanopart. Res., 9 (4), 639-645 (2007).
55. N. Kossovsky, A. Gelman, H. J. Hnatyszyn, S. Rajguru, R. L. Garrell, S. Torbati, S. S. F. Freitas and G. M. Chow, 'surface-modified diamond nanoparticles as antigen delivery vehicles,' Bioconjugate Chem., 6 (5), 507-511 (1995).
56. S. Liu, H. L. Zhang, T. C. Liu, B. Liu, Y. C. Cao, Z. L. Huang, Y. D. Zhao and Q. M. Luo, 'Optimization of the methods for introduction of amine groups onto the silica nanoparticle surface,' J. Biomed. Mater. Res. Part A, 80A (3), 752-757 (2007).
57. R. Narain, M. Gonzales, A. S. Hoffman, P. S. Stayton and K. M. Krishnan, 'Synthesis of monodisperse biotinylated p(NIPAAm)-coated iron oxide magnetic nanoparticles and their bioconjugation to streptavidin,' Langmuir, 23 (11), 6299-6304 (2007).
58. X. L. Chen, X. L. Li, F. Ding, W. Xu, J. Xiao, Y. L. Cao, P. Meduri, J. Liu, G. L. Graff and J. G. Zhang, 'Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes,' Nano Lett., 12 (8), 4124-4130 (2012).
59. A. Celzard, J. F. Mareche, F. Payot and G. Furdin, 'Electrical conductivity of carbonaceous powders,' Carbon, 40 (15), 2801-2815 (2002).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4617-
dc.description.abstract本研究利用介質放電系統進行粉體之表面披覆,不同型態的電漿能藉由不同的實驗架設及操作參數來形成。介電質放電系統是將至少一層介電質放置於上下電極之間來完成電漿的產生。當前驅物進入電漿系統後,會產生裂解並披覆於粉體表面,本實驗利用不同的實驗設置、前驅物及主粉體來完成粉體的披覆。
首先本研究以乙炔為前驅物進行鋰錳鎳氧粉體以及二氧化矽粉體的表面碳膜披覆,利用電漿進行批覆後以高溫爐進行熱處理,可發現其導電度有明顯的上升,並且利用拉曼光譜儀可看見粉體表面有明顯的G-peak及D-peak,表示我們於粉體表面完成非完美石墨之碳披覆。
其後我們以TEOS作為前驅物進行二氧化矽之表面披覆,本研究先後於氧化鋅及二氧化鈦表面進行二氧化矽薄膜披覆,由傅立葉轉換紅外線光譜儀可得知我們所批覆之二氧化系為有機的類二氧化矽薄膜。並且氧化鋅粉體於二氧化矽批覆後其UV段之發光性質有明顯增益,並且我們可以利用不同的前處理來改變其發光增益之波段。
最後我們以八氟環丁烷 (C4F8) 做為前驅物進行粉體表面的類鐵氟龍薄膜披覆,我們以二氧化鈦及二氧化矽等親水粉體做為主粉體進行批覆。於進行類鐵氟龍薄膜批覆後其親疏水性皆有明顯的改變。
  並且我們發現,在流體化床當中,粉體的流體化能夠讓粉體被能夠被均勻的批覆並且使得奈米粉體聚集體被破壞,使粉體的行為更接近真實的奈米顆粒。
zh_TW
dc.description.abstractIn this work, we synthesize core-shell nanoparticles with different precursor and particles by an ultra-fast, one-step, dry, and atmospheric-pressure plasma fluidized bed process.
Plasma-enhanced chemical vapor deposition (PECVD) has been widely used for thin film surface treatment and surface modification. However, PECVD is difficult to treat particles due to some problem like non-uniform coating and particle agglomeration. The fluidized bed technology has some advantage to treating; for example, well solid mixing and breakage of agglomeration.
First, we coating carbon film with different particle acetylene (C2H2) by as carbon source. The conductivity of coated particle is in significantly enhancement after dihydrogen process.
Then the SiOx film have been coated with Tetraethyl orthosilicate (TEOS) as precursor. An improved ultraviolet (UV) to visible luminescence (better than pure ZnO nanoparticles) was observed from ZnO/SiO2 core-shell nanoparticles by Fluorescence Spectrophotometer. The particles are well-dispersed in ethanol after silica coating due to the increase of zeta potential and breakage of agglomeration.
At last, we use Octafluorocyclobutane (C¬4F8) as precursor to coat Teflon-like film on SiO2 and TiO2 particles. The hydrophilicity of host particle changed significantly after coating.
We believe this fabrication technique brings impact to the field of photocatalysis, battery and emitting device.
en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:44:11Z (GMT). No. of bitstreams: 1
ntu-104-R02524089-1.pdf: 3222656 bytes, checksum: 3c41d18fdac0986b335e38ed4521f77c (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1前言 1
1.2研究動機 1
1.3論文總覽 2
第二章 文獻回顧 3
2.1 常壓電漿簡介 3
2.2 粉體表面披覆及改質之目的 6
2.2.1 改變粉體的電性 6
2.2.2改變粉體的分散性及流動性 11
2.2.3 改變粉體的親疏水性 16
2.2.3 流體化床形式的電漿輔助化學氣象沉積之於粉體披覆 21
2.3 粉體表面改質技術 22
2.3.1 固相反應 22
2.3.2 液相反應 26
2.3.3 氣相反應 30
2.4氧化鋅簡介 32
2.4.1光學性質 32
2.4.2 氧化鋅複合材料 33
2.5 儀器原理介紹 39
第三章 實驗設備與架構............................................................................................43
3.1 實驗設備之演進 43
3.1.1 噴動式流體化床常壓介電質放電系統裝置 43
3.1.2 上方進氣式噴動式流體化床常壓介電質放電系統 44
3.1.3 上方進氣式噴動式流體化床粉體輔助常壓放電系統 45
3.1.4 脈衝模式 (pulse mode) 45
3.1.5 電漿之性質檢測 46
3.2粉體披覆之檢測分析設備 50
第四章 實驗結果與討論 53
4.1利用噴動式流體化床進行氧化鋅之碳披覆 53
4.2利用噴動流體化床形式的電漿輔助化學氣相沉積進行鋰錳鎳氧之碳披覆 57
4.3利用噴動式流體化床形式的電漿輔助化學氣相沉積進行二氧化鈦的二氧化矽披覆 60
4.4利用噴動式流體化床形式的電漿輔助化學氣相沉積進行氧化鋅之二氧化矽披覆 65
4.5利用上方進氣的噴動式流體化床形式的電漿輔助化學氣相沉積進行氧化鋅之二氧化矽披覆 72
第五章 結論與未來展望 82
第六章 參考文獻 84
dc.language.isozh-TW
dc.title利用流體化床形式的電漿輔助化學氣相沉積進行粉體表面之薄膜沉積zh_TW
dc.titleMaterial Coating on Powder Surfaces by Dielectric Barrier Discharge at Atmospheric Pressureen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林致廷(Chih-Ting Lin),康敦彥(Dun-Yen Kang),許聿翔(Yu-Hsiang Hsu)
dc.subject.keyword奈米粉體,披覆,流體化床,電漿,介電質放電,zh_TW
dc.subject.keywordnano-particels,coating,plasma,DBD,fluidized bed,en
dc.relation.page91
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf3.15 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved