請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46139
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王明光(Ming-Kuang Wang) | |
dc.contributor.author | Yueh-Feng Wu | en |
dc.contributor.author | 吳岳峯 | zh_TW |
dc.date.accessioned | 2021-06-15T04:55:16Z | - |
dc.date.available | 2012-08-10 | |
dc.date.copyright | 2010-08-10 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-29 | |
dc.identifier.citation | 第六章 參考文獻
王明光。2000。土壤環境礦物學。藝軒圖書出版社。 王明光。2007。森林土壤化學。華香園出版社。 中央氣象局。2008。氣象資料年報︰第一部份-地面資料。 白創文。1997。東台灣黑色土性質與黏土礦物之研究。國立臺灣大學農業化學系暨研究所碩士論文。 呂理昌。1990。玉山國家公園東埔玉山區植物開花週期之研究-塔塔加-玉山主峰。內政部營建署玉山國家公園管理處。 李心儀。1995。臺灣中部人倫林道淋澱土之特性、化育與分類。國立臺灣大學農業化學系暨研究所碩士論文。 林經維。2000。祝山與萬歲山區土壤特性、化育與分類。國立臺灣大學農業化學系暨研究所碩士論文。 金恒鑣、唐凱軍、黃正良、李聖餘。1990。合歡山玉山箭竹草原土壤之發育與分類。內政部營建署太魯閣國家公園管理處。 吳正棟。1994。臺灣兩山區具薄膠層土壤之理化性質、微形態特徵與化育作用。國立臺灣大學農業化學系暨研究所碩士論文。 吳森博。2005。宜蘭太平山地區淋澱化土之特性化育與分類。國立臺灣大學農業化學系暨研究所博士論文。 邱春媚。2004。嘉義祝山地區砂質與壤質淋澱土土壤之特性與化育作用。國立臺灣大學農業化學系暨研究所碩士論文。 程意雯。1995。臺灣高山森林土壤中纖鐵礦與針鐵礦之生成。國立臺灣大學農業化學系暨研究所碩士論文。 郭魁士。1977。土壤學。中國書局出版。 陳尊賢、蔡呈奇。2000。臺灣地區淋澱化土的形態特徵與分類。土壤與環境 3:49-62。 莊作權、王明光。1995。黏土礦物第八章,p. 113-165。土壤分析手冊,中華土壤肥料學會主編,第二版,臺北,臺灣,pp. 489。 莊俊逸、王亞男、王明光、吳星輝。2004。塔塔加高山地區鐵杉、玉 山箭竹及草原表土之物理與化學性質比較。臺大實驗林研究報 告。18(1): 35-40。 張家銘、王明光。1995。臺灣紅壤及森林中之土壤氧化鐵。土壤學報。 32(1) :14-21。 楊家宏。1993。臺灣北部似淋澱土之特性、化育與分類。國立臺灣大學農業化學系暨研究所碩士論文。 郭城孟。1988。玉山國家公園東埔玉山維管束植物細部調查(二)。內政部營建署玉山國家公園管理處。 劉鎮宗。1990。臺灣北部塔曼山區灰壤化土之特性、化育與分類。國立臺灣大學農業化學系暨研究所碩士論文。 劉禎祺。2004。臺灣中部亞高山森林地區聚黏粒聚積之淋澱化土壤之特性與化育作用。國立臺灣大學農業化學系暨研究所博士論文。 蔣先覺。1990。臺灣灰土之特性、化育與分類。國立臺灣大學森林研究所碩士論文。 賴宜鈴。2006。光環境對臺灣棲蘭山區亞熱帶雲霧林內兩種檜木小苗生長與建立之影響。國立臺灣大學生態學與演化生物學研究所博士論文。 譚文峰、劉凡、丁孺牛、賀紀正。1998。HGMS技術與NaOH溶液濃縮土壤鐵錳氧化物的效果比較。土壤。30(5): 267-271。 Anderson, H.A., M. L. Berrow, V. C. Famer, A. Hepburn, J. D. Russell, and A. D.Walker. 1982. A reassessment of Podzol formation processes. J. Soil Sci. 33:125-136. Berthelin, J., and Y. Dommerques. 1976. The role of heterotrophic microorganisms in the deposition of iron and carbon in soil profiles. p. 609-631. In J. O. Nriagu (ed.) Environmental Biochemistry. Ann Arbor Science Publishers, Ann Arbor, MI, USA. Bloomfield, C. 1953. A study of podzolization. Part I. The mobilization of iron and aluminium by Scots Pine needles. J. Soil Sci. 4:5-23. Bockheim, J. G. 2003. Genesis of Bisequal soil on acidic drift in the upper Great Lakes Region, USA. Soil Sci. Soc. Am. J. 67:612-619. Boudot, J. P., A. Bel Hadj Brahim, R. Steimann, and F. Seigle-Murandi. 1989. Biodegradation of synthetic organo-metallic complexes of iron and aluminium with selected metal to carbon ratios. Soil Biol. Biochem. 21:961-966. Bullock, P. N., and B. Clayden. 1980. The morphological properties of Spodosols. p. 45-65. In B. K. G. Theng (ed.) Soils with variable charge. New Zealand Society of Soil Science, Soil Bureau, Department of Science and Industrial Research, Lower Hutt, New Zealand. Burrman, P., and L. P. van Reeuwijk. 1984. Proto-imogolite and the process of Podzol formation: a critical note. J. Soil Sci. 35:447-452. Brady, N. C., and R. R. Weil. 2003. Elements of the Nature and Properties of Soils (2nd Edition). Prentice-Hall Press, New Jersey. Brindley, G. W., and G. Brown. 1980. Crystal structures of clay minerals and their x-ray identification. Mineralogical Society. Monogr. No. 5. Lodon. D’Amico, M., F. Julitta, F. Previtail, and D. Cantelli. 2008. Podzolization over ophiolitic materials in the western Alps (Natural Park of Mont Avic, Aosta Valley, Italy). Geoderma 146:129-137. De Coninck, F. 1980. Major mechanisms in formation of spodic horizon. Geoderma 24:101-128. De Kimpe, C. R., and Y. A. Martel. 1976. Effect of vegetation on distribution of carbon, iron, and aluminum in the B horizons of northern Appalachian. Soil Sci. Soc. Am. J. 40:77-80. Devere, O., J. Garbaye, and B. Botton. 1996. Release of complexing organic acids by rhizosphere fungi as a factor in Norway spruce yellowing in acidic soils. Mycol. Res. 100:1367-1374. Duchaufour, P. 1982. Pedology. George Allen and Unwin, Lodon. Driessen, P., J. Deckers, O. Spaargaren, and F. Nachtergaele. 2001. Lecture notes on the major soils of the world. World Soil Resources Reports 94.FAO.Rome. Evans, L. J. 1980. Podol development of north Lake Huron in relation to geology and vegetation. Can. J. Soil Sci. 60:527-539. FAO-UNESCO. 2002. Digital Soil Map of the world and derived soil properties. Land and Water Digital Media Series # 1.FAO. Rome. Farmer, V. C., J. D. Russell, and M. L. Berrow. 1980. Imogolite and proto-imogolite allophone in spodic horizon: evidence for a mobile aluminium silicate complex in Podozol formation. J. Soil Sci. 31:673-684. Farmer, V. C. 1981. Possible roles of a mobile hydroxyaluminium orthosilicate complex (proto-imogolite) in podzolization, in:Migrations Organominerales dans les Sols Temperes. Colloques Internationaux du CNRS. 303:275-279. Farmer, V. C. 1982. Significance of the presence of allophone and imogolite in Podzol Bs horizons for podzolization mechanisms: A review. Soil Sci. Plant Nutr. 28:571-578. Farmer, V. C., W. J. McHardy, L. Robertson, A. Walker, and M. J. Wilson. 1985. Micromorphology and sub-microscopy of allophone and imogolite in a Podzol Bs horizon:evidence for translocation and origin. J. Soil Sci. 36:87-95. Farmer, V. C., and D. G. Lumsdon. 2001. Interactions of fulvic acid with aluminium and a proto-imogolite sol: the contribution of E-horizon eluates to podzolization. Eur. J. Soil Sci. 52:177-188. Gee, G. W. and J. W. Bauder. 1986. Particle-size analysis. p. 383-412. In A. Klute et al. (eds) Methods of Soil Analysis Part 1: Physical and Mineralogical Method. 2nd Eds. Agronomy Monography 9, Madison, WI, USA. Giesler, R., H. Ilvesniemi, L. Nyberg, P. van Hees, M. Starr, K. Bishop, T. Kareinen, and U.S. Lundström. 2000. Distribution and mobilization of Al, Fe and Si in three podzolic soil profiles in relation to the humus layer. Geoderma 94:249-263. Gustafsson, J. P., P. Battacharya, D. C. Bain, A. R. Fraser, and W. J. McHary. 1995. Podzolisation mechanisms and the synthesis of imogolite in northern Scandinavia. Geoderma 66:167-184. Huang, P. M. 1991. Ionic factors affecting the formation of shortrange ordered aluminosilicates. Soil Sci. Soc. Am. J. 55:1172-1180. Hseu, Z. Y., C. C. Tsai, C. W. Lin, and Z. S. Chen. 2004.Transitional soil characteristics of Ultisols and Spodosol in the subalpine froest of Taiwan. Soil Sci. 169:457-467. Hwang, Y. H., C. W. Fang, and M. H. Yin. 1996. Primary production and chemical composition of emergent aquatic macrophytes, Schenoplectus mucronatus ssp. Robustus and Sparganium fallax, in Lake Yuan-yang, Taiwan. Botanical Bulletin of Academia Sinica 37:265-273. Jackson, M. L. 1969. Soil chemical analysis: Advanced course. Publish by the author. Dept. of Soil Sci. Univ. of Wisconsin, Madison, WI. Jansen, B., G. J. Nierop, and J. M. Verstraten. 2004. Mobilization of dissolved organic matter, aluminium and iron in podzol eluvial horizons as affected by formation of metal-organic complexes and interactions with solid soil material. Eur. J. Soil Sci. 55:287-297. Jansen, B., G. J. Nierop, and J. M. Verstraten. 2005. Mechanisms controlling the mobility of dissolved organic matter, aluminium and iron in podzol B horizons. Eur. J. Soil Sci. 56:537-550. Jardine, P. M., N. L. Weber, and J. F. McCarthy. 1989. Mechanisms of dissolved carbon adsorption on soil. Soil Sci. Soc. Am. J. 53:1378-1385. Jersak, J., R. Amundson, and G. J. Brimhall. 1995. A mass balance anaysis of podzolization: examples from northern United States. Geoderma 66:15-42. Jones, D. L., and D. S. Bassington. 1998. Sorption of organic acids in acid soils and its implications in the rhizosphere. Eur. J. Soil Sci. 49:447-455. Klute, A. 1986. Methods of soil analysis, Part 1. Physical and mineralogical methods. 2nd ed. Publ. by soil Sci. Soc. Am., Madison, WI. Kodama, H., M. Schnitzer, and M. Jaakkimainen. 1983. Chloride and biotite weathering by fulvic acid solutions in closed and open systems. Can. J. Soil Sci. 63;619-629. Liao, C. C., C. H. Chou, and J. T. Wu. 2003. Regeneration pattern of yellow cypress on down logs in mixed coniferous-broadleaf forest of Yuanyang Lake Nature Preserve, Taiwan. Botanical Bulletin of Academia Sinica. 44:229-238. Loveland, P. J., and P. Dighy. 1984. The extraction of Fe and Al by 0.1 M pyrophosphate solutions: Comparison some techniques. J. Soil Sci. 35:243-250. Lundström, U. S. 1993. The role of organic acids in soil solution chemistry in a podzolized soil. J. Soil Sci. 44:121-133. Lundström, U. S., N. van Breemen, and D. Bain. 2000(a). The podzolization process. A review. Geoderma 94:91-107. Lundström, U. S., N. van Breemen, D. Bain, P. A. W. van Hees, R. Giesler, J. P. Gustafsson, H. Ilvesniemi, E. Karltun. P. A. Melkerud, M. Olsson, G. Riise, O. Wahlberg, A. Bergelin, K. Bishop, R. Finlay, A. G. Jongmans, T. Magnusson, H. Mannerkoski, A. Nordgren, L. Nyberg, M. Starr, and L. Tau Strand. 2000(b). Advances in understanding the podzolization process resulting from a multidisciolinary study of three coniferous forest soils in the Nordic Countries. Geoderma 94:335-353. Marschner, H. 1986. Mineral nutrition of higher plants. Academic Press, London. Matsu. N., and K. Wada. 1988. Interlayer materials of partially interlayered vermiculite in Dystrochrepts derived from Tertiary sediments. J. Soil Sci. 39:155-162. McDoewll, W. H., and T. Wood. 1984. Podzolization: soil process control dissolved organic carbon concentration in stream water. Soil Sci. 137:23-32. McKeague, J. A., and J. H. Day. 1966. Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46:13-22. McKeague, J. A., J. E. Brydon, and N. M. Miles. 1971. Differentiation of forms of extractable iron and aluminium in soils. Soil Sci. Soc. Am. Proc. 35:33-38. McKeague, J. A., G. J. Ross, and D. S. Gamble. 1978. Properties, criteria of classification and genesis of podzolic soils in Canada in Mahaney. p. 27-60. In W. C. Mahaney (ed.) Quaternary soils. Geo. Abstracts, Norwich. McKeague, J. A., F. De Connick, and D. P. Franzmeier. 1983. Spodosols. p. 271-252. In L. P. Wilding, N. E. Smeck, and G.F. Hall (eds.) Pedogenesis and Soil Taxonomy, II. The soil orders. Elsevier Sci. Publ. Comp., New York, U. S. A. and Amsterdam, The Netherlands. McLean, E. O. 1982. Soil pH and lime requirement. p. 199-223. In A. L. Page et al. (eds.) Methods of Soil Analysis. Part 2 Chemical and Microbiological Properties, 2nd ed. Soil Sci. Soc. Am., Madison, WI. Mehra, O. P., and M.L. Jackson. 1960. Iron oxides removal from soil and clay by dithionite-citrate system with sodium bicarbonate buffer. Clays Clay Miner. 7:317-327. Mokma, D. L., and P. Buurman. 1982. Podzols and Podzolization in temperate regions. ISM Monograph 1. International Soil Museum, Wageningen, The Netherlands. Mossin, L., M. Mortensen, and P. Nornberg. 2002. Imogolite related to podzolization processes in Danish Podzols. Geodema 109:103-116. Nelson D. W. and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p.961-1010. In D. L. Sparks et al. (Eds.). Methods of Soil Analysis. Part 3. Chemical Methods—SSSA Book Series No. 5. (3rd Ed.) Mardison, WI, USA. Reuter, G. 1999. Profilmorphologische Studie zur ”disharmonischen” Polygenese von Podsolen. J. Plant Nutr. Soil Sci. 162:97-105. Rhoades, J. D. 1982. Cation exchangeable capacity, p. 149-157. In A. L. Page et al. (eds.) Methods of Soil Analysis. Part 2 Chemical and Microbiological Properties, 2nd ed. Soil Sci. Soc. Am., Madison, WI. Sauer, D., H. Sponagel, M. Sommer, L. Giani, R. Jahn, and K. Stahr. 2007. A revirw on its genesis, occurrence, and functions. J. Plant Nutr. Soil Sci. 170:581-597. Schaetzl, R. J., and S. A. Isard. 1996. Regional-scale relationship between climate and strength of podzolization in the Great Lakes Region, North America. Catena 28:47-69. Schawe, M., S. Glatzel, and G. Gerold. 2007. Soil development along an altitudinal transect in a Bolivian tropical montane rainforest: Podzolization vs. hydromorphy. Catena 69:83-90. Schwertmann, U. 1964. Differenzierung eisenoxide des bodens durch photochemische extraction mit saurer ammonium oxalate-losung. Z. Flanzenernaehr. Dueng Bodenk. 105:194-202. Schwertmann, U. 1988. Occurrence and formation of iron oxides in various pedoenvironments, p.267-308, In. J.W. Stuckiet et al. (ed.) In’’Iron in soils and clay minerals.’’ D. Reidel Publ. Co., Dordrecht, The Netherlamds. Singleton, G. A., and L. M. Lavkulich. 1987. A soil chronosequence on beach sands, Vancouver Island, British Columbia. Can. J. Soil Sci. 67:795-810. Skiemstad, J. O., A. G. Waters, J.V. Hanna, and J. M. Oades. 1992. Genesis of Podzols on coastal dunes in southern Queensland: IV. Nature of the organic fraction as seen by 13C nuclear magnetic resonance spectroscopy. Aust. J. Soil Res. 30:667-681. Soil Survey Staff. 2006. Key to Soil Taxonomy.10th Edition. USDA-NRCS, Washington, D.C. Stahr, K., and M. Nakai. 1984. Der Nachweis von Imogulit in sauren Braunerden und Podsolen des Südschwarzwaldes und seine Bedeutung für die Bodenentwicklung. Mitteilgn. Dtsch. Bodenkundl. Gesellsch 39:53–58. Tamura, T. 1958. Identification of clay minerals from acid soils. J. Soil Sci. 9:141-147. Tan, K. H. 1980. The release of silicon, aluminium and potassium during decomposition of soil minerals by humic acid. Soil Sci. 129:5–11. Tomas, G. W. 1982. Exchangeable cation. p. 149-157. In A. L. Page et al. (eds.) Methods of Soil Analysis. Part 2 Chemical and Microbiological Properties, 2nd ed. Soil Sci. Soc. Am., Madison, WI. Ugolini, F. C., and R. A. Dahlgren. 1987. The mechanism of podzolization as revealed through soil solution studies. p. 195–203. In Righi, D., Chauvel, A. (eds.): Podzols and Podzolization. AFES and INRA, Paris. Ugolini, F. C., R. Dahlgren, S. Shoji, and T. Ito. 1988. An example of andosolization and podzolization as revealed by soil solution studies, southern Hakkoda, northeastern Japan. Soil Sci. 45:111-125. Ugolini, F. C., and R. A. Dahlgren. 1991. Weathering environments and occurrence of imogolite / allophane in selected Andosols and Spodosols. Soil Sci. Am. J. 55:1166–1171. van Hees, P. A. W., U. S. Lundström, M. Starr, and R. Giesler. 2000. Factors influencing aluminium concentrations in soil solution from podzols. Geoderma 94:289-310. Wang, C., J. A. McKeague, and H. Kodama. 1986. Pedogenic imogolite and soil environments: Case study of Spodosols in Quebec, Canada. Soil Sci. Am. J. 50:711–718. Watteau, F., and J. Berthelin. 1994. Microbial dissolution of iron and aluminium from soil minerals: efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. Eur. J. Soil Biol. 30:1-9. Whitting, L. D. and W. R. Allardice. 1986. X-Ray Dffraction Tecniques. p.331-363. In A. Klute et al. (eds.). Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. (2nd Ed.) Agronomy 9, Madison, WI, USA. Wiechmann, H. 1975. Bildung von Humusakkumulationshorizonten in Podsolen. Mitteilgn. Dtsch. Bodenkundl. Gesellsch 22:629–623. Wu, J.T., S. C. Chang, Y. S. Wang, and M. K. Hsu. 2001. Characteristics of the acidic environment of the Yuanyang Lake(Taiwain). Botanical Bulletin of Academia Sinica. 42:17-22. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46139 | - |
dc.description.abstract | 中文摘要
臺灣北部的四圍山與中部的塔塔加兩土壤剖面皆為具有淋澱化作用特徵的淋澱化土,兩地區在海拔高度、氣候條件與植被覆蓋上有許多差異,故針對兩土壤剖面之物理化學性質與黏土礦物方面進行研究,藉以了解在不同化育條件下兩淋澱化土壤之差異。進行的實驗包含土壤剖面基本理化性質分析、三二氧化物化學特性分析與黏土礦物鑑定。 在基本理化性質方面,兩土壤剖面皆為強酸性,並且交換性陽離子的含量,除了表層因為有機質的影響以外,其餘化育層含量都很低,另外由質地分析可發現兩剖面皆有明顯黏粒向下洗入移動聚積的現象,這是由於兩研究地區因高降雨量造成淋洗作用強烈,此外四圍山剖面總碳、總氮含量與碳氮比相較於塔塔加剖面則皆較低。 在三二氧化物化學特性方面,兩土壤剖面鐵、鋁氧化物皆有由土壤表層向下淋洗並累積在剖面下層的現象,而塔塔加的鐵活度比(Feo/Fed)值較四圍山高,且塔塔加剖面鐵氧化物結晶化指標(Fed-Feo)/ Fed)也較四圍山低,該兩指標顯示塔塔加剖面處於較還原的狀態。另外由鐵活度比可知塔塔加剖面淋澱化作用較四圍山剖面活躍,此外利用高梯度磁場分離機濃縮土壤中磁性物質後,再經X射線繞射儀鑑定土壤中的鐵氧化物後,發現兩土壤剖面皆含有鋁同構取代纖鐵礦(0.624 nm)與鋁同構取代針鐵礦(0.416 nm)。 在黏土礦物鑑定方面,四圍山土壤剖面中主要的礦物組成為綠泥石、伊萊石、高嶺石與三水鋁石,而塔塔加土壤剖面則為蛭石、伊萊石、高嶺石與三水鋁石,另外在塔塔加剖面的底層發現有氫氧基夾層蛭石(HIV)(1.41~1.01 nm)的存在,推測蛭石層間有氫氧化物的插入現象。由於四圍山與塔塔加土壤化育因子的差異,造成在塔塔加淋澱化作用較四圍山活躍,三二氧化物於剖面中向下移動現象明顯,並於剖面下方插入蛭石層間生成HIV。 關鍵詞︰淋澱化土、淋澱化作用、三二氧化物、鐵活度比、氫氧基夾層蛭石 | zh_TW |
dc.description.abstract | Abstract
Both Suweishan and Ta-Ta-Chia pedons are podzolic soils in Taiwan. There are a lot of different soil characteria with elevation, including climates and vegetations. This study aimed to identify soil physical, chemical properities and clay mineral compositions at different weathering conditions between the Suweishan and Ta-Ta-Chia pedons. Soil pH of the Suweishan and Ta-Ta-Chia pedons are under acidic conditions. Cation-exchange capacity except the surface horizon is because of high organic matter contents, the other horizons are low. These two study regions have high precipitation and intense leaching lead to clay contents increased with increasing soil depth. On the other hand, due to lower elevation of the Suweishan pedons, the total carbon, nitrogen contents and C/N ratio is lower than that of the Ta-Ta-Chia pedons. The sesquioxides leached from surface soils into subsoils and accumumated on subsoils. The iron activity ratio (i.e., Feo/Fed) on the Ta-Ta-Chia is higher than that of the Suweishan pedons and the iron crystallinity index (i.e., Fed-Feo/Fed) showed the reversed trend. From Feo/Fed and Fed-Feo/Fed values, it is indicated that Ta-Ta-Chia pedons with high clay contents are under higher activity of podzolization and redoximorphic condition than that of the Suweshan pedons. After high gradient magnetic separation (HGMS) treatments and X-ray diffraction analyses, both Suweishan and Ta-Ta-Chia pedons contained lepidocrocite and goethite. The clay fractions of the Suweishan contained chlorite, illite, kaolinite and gibbsite, and Ta-Ta-Chia pedon of vermiculite, kaolinite, illite and gibbsite. In addition, the hydroxyl-interlayered vermiculite (HIV) was found in subsoils of the Ta-Ta-Chia pedons. Formation of HIV in the Ta-Ta-Chia pedons are caused by the high higher activity of podzolization and redoximorphic condition during pedogenesis. Keywords: podzolic soils, podzolization, sesquioxides, iron activity ratio, hydroxyl-interlayered vermiculite (HIV) | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:55:16Z (GMT). No. of bitstreams: 1 ntu-99-R97623015-1.pdf: 1181881 bytes, checksum: 784c475789b40c7a209f32b2275009a1 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目錄
頁碼 謝誌------------------------------------------------------I 中文摘要--------------------------------------------------II 英文摘要--------------------------------------------------IV 目錄-------------------------------------------------------V 圖目錄---------------------------------------------------VII 表目錄----------------------------------------------------IX 第一章 前言------------------------------------------------1 第二章 前人研究--------------------------------------------3 第一節、 淋澱土的生成環境--------------------------------3 第二節、 淋澱土的形態特徵--------------------------------4 第三節、 淋澱土的化育機制--------------------------------6 第四節、 臺灣淋澱土的分佈-------------------------------12 第五節、 土壤鐵氧化物的濃縮-----------------------------12 第六節、 黏土礦物層間物質的抽出與層間電荷之研究---------13 第三章 材料與方法-----------------------------------------15 第一節、 研究地區環境資料-------------------------------15 第二節、 土壤採樣方法-----------------------------------21 第三節、 土壤樣品前處理---------------------------------21 第四節、 土壤樣品基本物理化學性質分析及方法-------------21 第五節、 三二氧化物的化學抽出分析-----------------------24 第六節、 黏土礦物組成成分鑑定---------------------------25 第四章 結果與討論-----------------------------------------30 第一節、 土壤的基本物理化學性質-------------------------30 第二節、 土壤三二氧化物性質-----------------------------38 第三節、 土壤黏土礦物的鑑定與組成-----------------------46 第四節、 土壤黏土礦物的風化序列-------------------------64 第五節、 高梯度磁場分離技術處理-------------------------69 第六節、 層間物質的抽出處理-----------------------------73 第五章 結論-----------------------------------------------82 第六章 參考文獻-------------------------------------------83 圖目錄 圖一、剖面採樣地點示意圖-----------------------------------18 圖二、兩採樣剖面照片(圖A︰四圍山剖面,圖B︰塔塔加剖面) ---19 圖三、四圍山地區氣溫和降雨的變化圖-------------------------20 圖四、塔塔加地區氣溫和降雨的變化圖------------------------ 20 圖五、塔塔加與四圍山兩土壤剖面各形態鐵鋁氧化物之分佈趨勢---41 圖六、四圍山土壤剖面A層黏粒X射線繞射圖------------------47 圖七、四圍山土壤剖面AE層黏粒X光繞射圖-------------------49 圖八、四圍山土壤剖面E層黏粒X光繞射圖--------------------50 圖九、四圍山土壤剖面Bt層黏粒X光繞射圖--------------------51 圖十、四圍山土壤剖面Bw1層黏粒X光繞射圖------------------53 圖十一、四圍山土壤剖面Bw2層黏粒X光繞射圖-----------------54 圖十二、四圍山土壤剖面Bw3層黏粒X光繞射圖-----------------55 圖十三、塔塔加土壤剖面Oa層黏粒X射線繞射圖----------------57 圖十四、塔塔加土壤剖面AE層黏粒X射線繞射圖---------------58 圖十五、塔塔加土壤剖面Bt1層黏粒X射線繞射圖---------------60 圖十六、塔塔加土壤剖面Bt2層黏粒X射線繞射圖---------------62 圖十七、塔塔加土壤剖面Bt3層黏粒X射線繞射圖----------------63 圖十八、四圍山剖面經HGMS處理之XRD圖--------------------70 圖十九、塔塔加剖面經HGMS處理之XRD圖--------------------72 圖二十、塔塔加剖面Bt3化育層黏粒經0.3 M檸檬酸鈉溶液在80℃下抽出後,再以鉀飽和室溫處理之X射線繞射圖-----------74 圖二十一、塔塔加剖面Bt3化育層黏粒經熱檸檬酸鈉溶液抽出48小時後,再以鎂飽和、鎂-飽和甘油加熱和鉀飽和加熱室溫處理之X射線繞射圖----------------------------------75 圖二十二、塔塔加剖面Bt3化育層黏粒經0.1 M鹽酸溶液在80℃下抽出後,再以鉀飽和室溫處理之X射線繞射圖-----------77 圖二十三、塔塔加剖面Bt3化育層黏粒經鹽酸溶液抽出32小時後,再以鎂飽和、鎂-飽和甘油加熱和鉀飽和加熱室溫處理之X射線繞射圖--------------------------------------78 圖二十四、為經過0.3 M熱檸檬酸鈉80℃抽出後的黏粒,再以十二烷基氨離子插入後的X射線繞射圖--------------------81 表目錄 表一、四圍山與塔塔加採樣地區的環境條件---------------------17 表二、四圍山剖面土壤基本物理化學性質表---------------------31 表三、塔塔加剖面土壤基本物理化學性質表---------------------32 表四、四圍山剖面土壤中三二氧化物分佈表---------------------39 表五、塔塔加剖面土壤中三二氧化物分佈表---------------------40 表六、四圍山地區不同土壤化育層黏土礦物種類及相對含量(半定量)--------------------------------------------------65 表七、塔塔加地區不同土壤化育層黏土礦物種類及相對含量(半定量)--------------------------------------------------65 表八、0.3 M檸檬酸鈉各時間點抽出的鋁、鐵和鎂離子含量--------79 表九、0.1 M鹽酸各時間點抽出的鋁、鐵和鎂離子含量------------80 | |
dc.language.iso | zh-TW | |
dc.title | 塔塔加與四圍山土壤物理化學性質的差異 | zh_TW |
dc.title | Differentiation of soil physical and chemical properties between Ta-Ta-Chia and Suweishan soils | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許正一,張大偉,鄒裕民,施養信 | |
dc.subject.keyword | 淋澱化土,淋澱化作用,三二氧化物,鐵活度比,氫氧基夾層蛭石, | zh_TW |
dc.subject.keyword | podzolic soils,podzolization,sesquioxides,iron activity ratio,hydroxyl-interlayered vermiculite (HIV), | en |
dc.relation.page | 94 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。