請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46120完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳建德 | |
| dc.contributor.author | Chun-Hao Fan | en |
| dc.contributor.author | 范竣皓 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:54:36Z | - |
| dc.date.available | 2016-08-19 | |
| dc.date.copyright | 2011-08-19 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-18 | |
| dc.identifier.citation | 宋偉杰,王崢,王利琳。2007。利用病毒誘導的基因沉默技術研究一個碗豆PI
同源基因的功能。科學通報 52: 1644-1648。 胡智傑。2008。利用病毒誘導基因沉寂探討逆境誘導下菸草脯胺酸合成酵素角 色。國立臺灣大學農業化學系碩士論文。臺灣,臺北。 陳志威。2003。茄科作物脯胺酸代謝相關基因之選殖及其功能分析。國立中興大 學植物病理學研究所碩士論文。臺中。臺灣。 張惠如。2005。以病毒誘導基因沉寂策略進行菸草脯胺酸庫之代謝工程。國立中 興大學植物病理學系碩士論文。臺中,臺灣。 鄭翔仁。2007。銅、鋅、鎘對菸草吸收重金屬之交互影響。國立臺灣大學農業化 學系碩士論文。臺灣,臺北。 劉畊甫。2009。利用病毒誘導基因沉寂系統探討同逆境下菸草脯胺酸之生成及 代謝。國立臺灣大學農業化學系碩士論文。臺灣,臺北。 蘇彥碩。2005。逆境下菸草 (Nicotiana benthamiana) 脯胺酸代謝基因之調控。國 立臺灣大學農業化學系碩士論文。臺灣,臺北 Alia, S. P. P. 1991. Proline accumulation under heavy metal stress. J. Plant Physiol. 138: 554-558. Allan, A.C., M. D. Fricker, L. J. Ward, M. H. Beale, and A. J. Trewavas. 1994. Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. Plant Cell 6: 1319–1328. Armengaud, P., L. Thiery, N. Buhot, G. G. March, and A. Savoure. 2004. Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol. Plant. 120: 442-450. Asghari, B. 2010. Root-to-shoot signal transduction in rice under salt stress. Pak. J. Bot. 42: 329-339. Baker, D. E., and J. P. Senef, 1995. Copper in: Alloway BJ (ed), Heavy metals in soils. Blackie Academic and Professional, London. pp. 179-205. Bano, A. 2010. Root-to-shoot signal transduction in rice under salt stress. Pak. J. Bot. 42: 329-339. Baryla, A., P. Carrier, F. Franck, C. Coulomb, C. Sahut, and M. Havaux. 2001. Leaf chlorosis in oilseed rape plants ( Brassica napus ) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212: 696-709. Bates, L. S. 1972. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207. Bernal, M., P. Sánchez-Testillano, M. D. C. Risueño, and I. Yruela. 2006. Excess copper induces structural changes in cultured photosynthetic soybean cells. Funct. Plant Boil. 33: 1001-1012. Boggess, S. F., L. G. Paleg, and D. Aspinall, 1975. ∆1-pyrroline-5-carboxylic acid dehydrogenase in barley, a proline-accumulation species. Plant Physiol. 56: 259-262. Boyer, G. L., and J. A. D. Zeevaart. 1982. Isolation and quantitation of β-D-glucopyran- osyl abscisate from leaves of Xanthium and spinach. Plant Physiol. 70: 227–231. Bray, E. A. 1997. Plant responses to water deficit. Trends Plant Sci. 2: 48-54. Bray, E. A., and J. A. D. Zeevaart . 1985. The compartmentation of abscisic acid and β-D-glucopyranosyl abscisate in mesophyll cells. Plant Physiol. 79: 719–722. Burch-smith,T. M., J. C. Andeson, G. B. Martin, and S. P. Dinesh-Knmar. 2004. Application and advantages of virus-induced gene silencing for gene function studies in plants. Plant. J. 39: 734-746. DeSilva, D.L.R., R. C. Cox, A. M. Hetherington, and T. A. Mansfield. 1985. Synergism between calcium ions and abscisic acid in preventing stomatal opening. New Phytol. 101: 555–563. Chai, T. Y., L. Didierjean, G. Burkard, and G. Genot. 1998. Expression of a green tissue-specific 11 kDa proline-rich protein gene in bean in response to heavy metals. Plant Sci. 133: 47-56. Chakravarty, B., and S. Srivastava, 1997. Effects of genotype and explant during in vitro response to cadmium Stress and variation in protein and proline contents in linseed. Ann. Bot. 79: 487-491. Chen, C. T., L.-M. Chen, C. C. Lin, and C. H. Kao. 2001. Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci. 160: 283-290. Chen, C. T., T. H. Chen, K. F. Lo, and C. Y. Chiu. 2004. Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Sci. 166: 103-111. Chen, T., X. Liu, X. Li, K. Zhao, J. Zhang, J. Xu, J. Shi, and R. A. Dahlgren. 2009. Heavy metal sources identification and sampling uncertainty analysis in a field-scale vegetable soil of Hangzhou, China. Environ. Pollut. 157: 1003-1010. Davies, W.J., T. A. Mansfield. 1983. The role of abscisic acid in drought avoidance. In FT Addicott, ed, Abscisic Acid. Praeger Publishers, New York pp 237-268. Delauney, A. J., and D. P. S. Verma. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215–223. Deutch,C. E., and I. Winicov. 1995. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Mol. Biol. 27: 411–418. Eisenreich W, A. Bacher, D. Arigoni, and F. Rohdich. 2004. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell. Mol. Life Sci. 61: 1401–26. Fire, A., S. Xu, M. K. Montgomy, S. A. Kostas, S. E. Driver, and C. C. Mello. 1998. Potent and specific interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811. Fukuoka, S., N. Saka, H. Koga, K. Ono, T. Shimizu, K. Ebana, N. Hayashi, A. Takahashi, H. Hirochika, K. Okuno, and M. Yano. 2009. Loss of function of a proline-containing protein confers durable disease resistence in rice. Science 325: 998-1001. Ghassemian, M., J. Lutes, H. S. Chang, I. Lange, W. Chen, T. Zhu, X. Wang, and B. M. Lange. 2008. Abscisic acid-induced modulation of metabolic and redox control pathways in Arabidopsis thaliana. Phytochemistry 69: 2899–2911. Goodwin, W., J.A. Pallas, and G. I. Jenkins. 1996. Transcrips of a gene encoding putative cell wall-plasma membrane linker protein are specifically cold-induced in Brassica napus. Plant Mol. Boil. 31: 771-781. Grill, E., S. Löffler, E. L. Winnacker, and H. M. Zenk. 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific y-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Nati. Acad. Sci. USA 86: 6838-6842. Haag-Kerwer, A., H. J. Schafer, S. Heiss, C. Walter, and T. Ruasch. 1999. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J. Exp. Bot. 50: 1827–1835. Halliwell, B., and J. M. C. Gutteridge. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1-14. Hamilton, A. J., and D. C. Baulcombe. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950–952. Hare, P. D., W. A. Cress, and J. van Staden. 1999. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J. Exp. Bot. 50: 413-434. Hartung, W, A. Sauter, and E. Hose. 2002. Abscisic acid in the xylem: where does it come from, where does it go to? J. Exp. Bot. 53: 27–32. Hsu, Y. T., and C. H. KAO. 2003. Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant, Cell Environ. 26: 867–874. Hsu, Y. T., and C. H. Kao. 2005. Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiol. Plant. 124: 71-80. Hu, C. A. A., A. J. Delauney, and D. P. S. Verma. 1992. A biofunctional enzyme (∆1-pyrroline-5-carboxylate sythetase) catalyzes the first two steps in proline biosynthesis in plants. Proc. Natl. Acad. Sci. 89: 9354-9358. Igarashi, A., K. Yamagata, T. Sugai, Y. Takahashi, E. Sugawara, A. Tamura, H. Yaegashi, N. Yamagishi, T. Takahashi, M. Isogai, H. Takahashi, and N. Yoshikawa. 2009. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386: 407–416. Jia, W., Y. Wang, S. Zhang, and J. Zhang. 2002. Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. J. Exp. Bot. 53: 2201-2206. Kabata-Pendias, A. and H. Pendia. 2001. Trace element in soils and plants. p.73-98. In A. Kabata-Pendias and H. Pendias (eds.). Trace element in soils and plants. (3rdedition). CRC Press, Boca Raton, FL, USA. Kavi-Kishor, P.B., Z. Hong, G. H. Miao, C.-A. A. Hu, and D. P. S. Verma. 1995. Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387–1394. Kumagai, M. H., J. Donson, G. Della-Cioppa, D. Harvey, K. Hanley, and L. K. Grill. 1995. Cytoplasmic inhibition of cartenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. U.S.A. 92: 1679-1683. Küpper, H., F. Küpper, and M. Spiller. 1998. In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res. 58: 123–133. Küpper, H., I. Šetlík, M. Spiller, F. C. Küpper, and O. Prášil, 2002. Heavy metal induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J. Phycol. 38: 429-441. Kushiro, T., M. Okamoto, K. Nakabayashi, K. Yamagishi, and S. Kitamura. 2004. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: key enzymes in ABA catabolism. EMBO J. 23: 1647–1656. Larsson, E.H., J. F. Bornman, and H. Asp.1998. Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J. Exp. Bot. 323: 1031–1039. Lawton, M. A., C. J. Lamb. 1987. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Mol. Cell Biol. 7: 335-341. Liu, W. C., and H. R. Carns. 1961. Isolation of abscisin, an abscission accelerating substance. Science 134: 384-385. Lolkema, P. C., and R. Vooijs. 1986. Copper tolerance in Silene cucubalus: subcellular distribution of copper and its effect on chloroplast and plastocyanin synthesis. Planta 167: 30-36. Martinez, J., A. Patkaniowska, H. Urlaub, R. Luhrmann, and T. Tuschl. 2002 Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110: 563–574. Martinez-Ballesta, M.C., V. Martinez, and M. Carvajal. 2003. Aquaporin functionality in relation to H+-ATPase activity in root cells of Capsicum annuum grown under salinity. Physiol. Plant 117: 413–420. Mehta S. K., and J. P. Gaur. 1999. Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol. 143: 253-259. Nambara, E., and A. Marion-Poll. 2005. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56: 165–85. Nanjo, T., M. Kobayashi, Y. Yoshiba, Y. Sanada, K. Wada, H. Tsukaya, Y. Kakubari, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1999. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J. 18: 185–193. Napoli, C., C. Lemieux, R. Jorgensen. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279-289. Nedjimi, B., and Y. Daoud. 2009. Cadmium accumulation in atriplex halimus subsp. Schweinfurthii and its influence on growth, proliine, root hydraulic conductivity and nutrient uptake. Flora 204: 316–324. Nuccio, M. L., D. Rhodes, S. D. McNeil, and A. D. Hanson. 1999. Metabolic engineering of plants for osmotic stress resistance. Curr. Opin. Plant Biol. 2: 128–134. Ohkuma, K., F. T. Addicott, and O. E. Smith. 1965. Tetrahedron Lett. 2529. Orcutt, D. M., and E. T. Nilsen. 2000. Physiology of plants under stress soil and biotic factors. 2nd edn. John Wiely & Sons Inc, USA. pp. 481-503. Perfus-Barbeoch, L., N. Leonhardt, A. Vavasseur, and C. Forestier. 2002. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 32: 539-548. Poschenrieder, C., B. Gunsé, and J. Barcelò, 1989. Influence of cadmium on water relations, stomatal resistance and abscisic content in expanding bean leaves. Plant Physiol. 90: 1365–1371. Prasad, M. N. V. 1995. Cadmium toxicity and tolerance in vascular plants. Environ. Exp. Bot. 35: 525–545. Prasad, M. N. V. and K. Strzatka. 2002. Physiology and biochemistry of metal toxicity and tolerance in plant. J. Plant Physiol. 28: 201-227. Priyanka, B., K. Sekhar, V. D. Reddy, and K. V. Rao. 2010. Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress. Plant Biotech. J. 8: 76–87. Rhodes, D., S. Handa, and R. A. Bressan. 1986. Metolic changes associated with adaptation of plant cells to water stress. Plant Physiol., 95: 787-791. Sarmuel, G. 1934. The movement of tobacco mosaic virus within the plant. Ann. Appl. Biol. 21: 90-111. Saradhi P. P., S. AliaArora, and K. V. S. K. Prasad. 1995. Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation. Biochem. Biophys. Res. Commun. 209: 1-5. Scandalios, J. G. 2005. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 38: 995-1014. Schobert, B., and H. Tschesche. 1978. Unusual solution properties of proline and its interaction with proteins. Biochim. Biophys. Acta 541: 270-277. Schwartz, A. 1985. Role of calcium and EGTA on stomatal movements in Commelina communis. Plant Physiol. 79: 1003–1005. Seregin, I.V., and V. B. Ivanov. 2001. Physiological aspects of cadmium and lead toxic effects on the higher plants. Russ. J. Plant Physiol. 48: 606–630. Sharma, S. S., H. Schat, and R. Vooijs. 1998. In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry 49: 1531-1539. Sheng, J., R. D. Ovidio, and M. C. Mehdy. 1991. Negative and positive regulation of a novel proline-rich protein mRNA by fungal elicitor and wounding. Plant J. 1: 345-354. Shinozaki, K., and K. Yamaguchi-Shinozaki. 1997. Gene expression and signal transduction in water-stress response. Plant Physiol. 115: 327-334. Shinozaki, K., and K. Yamaguchi-Shinozaki. 2000. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217–223. Showalter, A. 1993. Structure and function of plant cell wall proteins. Plant Cell 5: 9-23. Solís-Domínguez, F. A., M. C. González-Chávez, R. Carrillo-González, and R. Rodríguez-Vázquez. 2007. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. J. Hazard. Mater. 141: 630–636. Spitzer, B., M. M. B. Zvi, M. Ovadis, E. Marhevka, O. Edelbaum, I. Marton, T. Masci, M. Alon, S. Morin, I. Rogachev, and A. Vainstein. 2007. Reverse genetics of floral scent: application of tobacco rattle virus-based gene silencing in petunia. Plant Physiol. 145: 1241-1250. Stein, K., and G. Ohlenbusch. 1997. Inhibition of the enzyme phosphoenolpyruvate carboxylase (PEPC) by different pollutants. Talanta 44: 475-481. Stein, H., A. Honig, G. Miller, O. Erster, H. Eilenberg, L. N. Csonka, L. Szabados, C. Koncz, and A. Zilberstein. 2011. Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant sci. doi:10.1016/j.plantsci.2011.04.013. Stevenson, F. J., and M. A. Cole, 1999. Cycle of soil-carbon, nitrogen, phosphorus, sulfur, micronutrients. John Weiley & Sons 380. Stiborová, M., M. Ditruvhová, and A. Brezinová. 1986. Effect of ions of heavy-metals on the photosynthetic characteristics of maize (Zee mays L.). Biologia 41: 1221-1228. Stobart, A. K., W. T. Griffiths, I. Ameen-Bukhari, and R. P. Sherwood. 1985. The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol. Plant. 63: 293-298. Tanyolaç, D., Y. Ekmekçi, and S. Ünalan. 2007. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67: 89-98 Tewari, R. K., E. J. Hahn, and K. Y. Paek. 2008. Modulation of copper toxicity-induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng. Plant Cell Rep. 27: 171–181. Thomashow, M. F. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599. Verbuggen, N., R. Villarroel, and M. V. Motagu. 1993. Osmoregulation of pyrroline-5-carboxylate reductase gene in Arabidopsis Thaliana. Plant Physiol. 103: 771-781. Waterhouse, P. M., M. W. Graham, and M. B. Wang. 1998. Virus resistance and gene silencing in plants is induced by double stranded RNA. Proc. Natl. Acad. Sci. 95: 13959-13964. Waterhouse, P.M., and C. A. Helliwell. 2002. Exploring plant genomes by RNA-induced gene silencing. Nature Rev. Genet. 4: 29–38. White, T. A., N. Krishnan, D. F. Becker, and J. J. Tanner. 2007. Structure and kinetics of monofunctional proline dehydrogease from Thermus thermophilus. J. Biol. Chem. 282: 14316-14327. Wilkinson, S, and W. J. Davies, 2002. ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ. 25:195–210. Xu, J., H. Yin, X. Li. 2009. Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep. 28: 325–333. Yoshiba, Y., T. Kiyosue, K. Nakahima, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1997. Regulation of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 38: 1095-1120. Yruela, I. 2005. Copper in plants. Braz. J. Plant Physiol. 17: 145-156. Zengin, F.K., and S. Kirbag. 2007. Effects of copper on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings. J. Environ. Biol. 28: 561-566. Zhang, J., and X. Zhang. 1994. Can early wilting of old leaves account for much of the ABA accumulation in flooded pea plants? J. Exp. Bot. 45: 1335-1342. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46120 | - |
| dc.description.abstract | 本研究目的為瞭解菸草根部於重金屬逆境下之抵抗機制。台灣土壤之重金屬汙染,以銅及鎘佔多數,兩者皆可由土壤被植物吸收。植物面臨此毒害逆境產生之抵抗機制可應用於植生復育。然而目前研究多著重於植物地上部生理狀態與重金屬的累積,較少有對於根部之生理研究,此可能是根部取樣不易,或取樣時間過長。本研究採介質於內與砂耕於外之混和方式,藉以建立易取樣之菸草新根研究平臺,並藉由外加離層酸或離層酸生成抑制劑 (fluridone) 及利用病毒誘導基因沉寂,研究菸草新根於重金屬逆境下離層酸及脯胺酸代謝基因可能扮演的角色。結果顯示,銅處理使菸草新根離層酸含量上升 (80%) 而鎘處理使離層酸含量下降 (30%),外加離層酸處理,使菸草鎘吸收下降而銅吸收則無異。推測因銅處理本身使離層酸含量上升,因此外加離層酸對銅吸收影響有限。反之,外加fluridone使菸草根離層酸下降,可提高菸草對銅吸收,而鎘之吸收無異。推測因鎘處理本身使根離層酸含量下降,因此外加fluridone對鎘吸收影響有限。上述結果顯示根部離層酸含量之改變影響菸草對重金屬吸收。菸草新根於銅或鎘逆境下皆降低游離脯胺酸含量,鍵結型脯胺酸含量不變。然而利用病毒誘導基因沉寂,抑制脯胺酸代謝基因PDH (proline dehydrogenase) 表現,可增加鎘處理下菸草根部游離脯胺酸含量,據此推測菸草根部可能藉增加PDH基因表現,使脯胺酸於根部含量下降,然而其機制尚待更進一步了解。 | zh_TW |
| dc.description.abstract | The aim of this thesis was to reveal the mechanism of tobacco roots against heavy metals. In Taiwan, many heavy metal contaminated soils contain copper and cadmium, both of them were easily up taken by plants. When plants faced to heavy metals stress, their mechanisms that against the toxicity could be applied in phytoremediation. However, most researches focused on the heavy metal accumulation and the physiological changes in shoot. The reasons of only few reports on root status could be the tissue lost or the time consuming during root collecting. In this study, plants were transplanted with soil and burred in sand, by which the newly growing roots can be collected easily. After that, the treatment of abscisic acid (ABA), fluridone (ABA synthesis inhibitor) or virus induced gene silencing (VIGS) in plant root were applied before heavy metals treatments. The results showed tobacco ABA increased about 80% in new root under copper treatment, but decreased about 30% under cadmium treatment. The addition of ABA in sand culture decreased cadmium uptake, but did not affect copper uptake. On the contrary, the addition of fluridone not only decreased ABA content in new root but also increased copper uptake and not affect cadmium uptake. Both of copper and cadmium decreased new root free form proline, but did not affect conjugated form proline content. Using VIGS to suppress PDH (proline dehydrogenase) gene increase new root proline content under cadmium stress, suggesting that cadmium decreased proline content in tobacco new root could be caused by the increase of PDH gene activity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:54:36Z (GMT). No. of bitstreams: 1 ntu-100-R98623013-1.pdf: 1820811 bytes, checksum: c9ec6dbb7385a3b29bffa7382c5b551c (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要…………………………………………………………………………….. Ⅰ
Abstract................................................................................................................ Ⅱ 目錄...................................................................................................................... Ⅲ 縮寫對照表…………………………………………………………………….. Ⅴ 第一章 前言…………………………………………………………………… 1 第二章 前人研究 一、鎘逆境對植物之影響………………………………………………… 3 二、銅逆境對植物之影響………………………………………………… 4 三、離層酸之生合成路徑………………………………………………… 4 四、重金屬逆境與植物離層酸之關係…………………………………… 5 五、病毒誘導基因沉寂之研究…………………………………………… 6 六、脯胺酸之生合成及代謝……………………………………………… 9 七、脯胺酸與環境逆境之研究…………………………………………… 10 第三章 研究目的……………………………………………………………… 12 第四章 材料與方法 一、植物材料……………………………………………………………… 13 二、砂耕系統之建立……………………………………………………… 13 三、誘導基因沉寂病毒載體……………………………………………… 13 四、生體外轉錄作用……………………………………………………… 14 五、葉乾旱逆境處理……………………………………………………… 14 六、重金屬處理及採收後樣品處理……………………………………… 15 七、植體重金屬濃度分析………………………………………………… 16 八、離層酸含量測定……………………………………………………… 16 九、脯胺酸含量測定……………………………………………………… 17 十、水分含量測定………………………………………………………… 18 十一、數據分析…………………………………………………………… 18 第五章 結果與討論 一、重金屬施用與植物根部水分含量之關係…………………………… 19 二、菸草對重金屬之累積………………………………………………… 19 三、重金屬處理對根部離層酸變化之影響……………………………… 21 四、重金屬逆境下外加離層酸及fluridone對新根離層酸含量之影響… 22 五、外加離層酸及fluridone對菸草重金屬吸收之影響………………… 23 六、病毒接種對菸草生長及外表形態之影響…………………………… 24 七、病毒誘導基因沉寂之確認…………………………………………… 25 八、於銅逆境下藉VIGS探討根部游離脯胺酸扮演之角色……………. 26 九、於鎘逆境下藉VIGS探討根部游離脯胺酸扮演之角色…………… 28 十、重金屬及VIGS處理對根部鍵結脯胺酸含量影響………………… 29 十一、VIGS處理對菸草重金屬吸收之影響……………………………. 29 第六章 結論……………………………………………………………………. 32 參考文獻............................................................................................................... 33 | |
| dc.language.iso | zh-TW | |
| dc.subject | 脯胺酸 | zh_TW |
| dc.subject | 銅 | zh_TW |
| dc.subject | 離層酸 | zh_TW |
| dc.subject | 鎘 | zh_TW |
| dc.subject | 菸草 | zh_TW |
| dc.subject | 病毒誘導基因沉寂 | zh_TW |
| dc.subject | tobacco | en |
| dc.subject | virus induced gene silencing (VIGS) | en |
| dc.subject | proline | en |
| dc.subject | abscisic acid | en |
| dc.subject | copper | en |
| dc.subject | cadmium | en |
| dc.title | 銅鎘逆境下菸草根部離層酸及脯胺酸代謝基因之功能研究 | zh_TW |
| dc.title | Functional studies on abscisic acid and proline metabolism related genes in Nicotiana benthamiana roots under copper and cadmium stress | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱志郁,鍾仁賜,張孟基,陳佩貞 | |
| dc.subject.keyword | 病毒誘導基因沉寂,脯胺酸,離層酸,銅,鎘,菸草, | zh_TW |
| dc.subject.keyword | virus induced gene silencing (VIGS),proline,abscisic acid,copper,cadmium,tobacco, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
