請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46065
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王惠鈞(Andrew H.-J. Wang) | |
dc.contributor.author | Cyong-Yi Wang | en |
dc.contributor.author | 王瓊儀 | zh_TW |
dc.date.accessioned | 2021-06-15T04:52:50Z | - |
dc.date.available | 2015-08-03 | |
dc.date.copyright | 2010-08-03 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-30 | |
dc.identifier.citation | 1. Rodriguez-Crespo, I., D-amino acids in the brain: pyridoxal phosphatedependent amino acid racemases and the physiology of D-serine. FEBS J, 2008. 275(14): p. 3513.
2. Wolosker, H., S. Blackshaw, and S.H. Snyder, Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci U S A, 1999. 96(23): p. 13409-14. 3. Wolosker, H., et al., Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci U S A, 1999. 96(2): p. 721-5. 4. Kleckner NW, D.R., Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science, 1988. 241: p. 835-837. 5. Schell, M.J., M.E. Molliver, and S.H. Snyder, D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A, 1995. 92(9): p. 3948-52. 6. Miya, K., et al., Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol, 2008. 510(6): p. 641-54. 7. Basu AC, T.G., Hani L, Jiang ZI, Benneyworth M, Ehmsen JT, Mustafa AK, Dore S, Synder SH & Coyle JT, Abnormal sensory gating, reversal of spatial memory, and anxiety-like behavior in serine racemase knockout mice. Soc Neurosci Abstr, 2007. 576(K17). 8. Mustafa A. K, E.J., Zeynalov E, Ahmad AS, Dore S,Basu AC, Tasi GE et al., Dserine deficient mice display NMDA receptor dysfunction and reduced stroke damage. Soc Neurosci Abstr, 2007. 58(S76). 9. Mothet, J.P., et al., D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A, 2000. 97(9): p. 4926-31. 10. Kartvelishvily, E., et al., Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J Biol Chem, 2006. 281(20): p. 14151-62. 11. Shleper, M., E. Kartvelishvily, and H. Wolosker, D-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. J Neurosci, 2005. 25(41): p. 9413-7. 12. Panatier, A., et al., Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell, 2006. 125(4): p. 775-84. 13. Kim, P.M., et al., Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci U S A, 2005. 102(6): p. 2105-10. 14. Swanson, R.A., W. Ying, and T.M. Kauppinen, Astrocyte influences on ischemic neuronal death. Curr Mol Med, 2004. 4(2): p. 193-205. 15. Sasabe, J., et al., D-serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J, 2007. 26(18): p. 4149-59. 16. Wu, S.Z., et al., Induction of serine racemase expression and D-serine release from microglia by amyloid beta-peptide. J Neuroinflammation, 2004. 1(1): p. 2. 17. Inoue, R., et al., NMDA- and beta-amyloid1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice. J Neurosci, 2008. 28(53): p. 14486-91. 18. Goff, D.C. and J.T. Coyle, The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry, 2001. 158(9): p. 1367-77. 19. Lewis, D.A. and G. Gonzalez-Burgos, Pathophysiologically based treatment interventions in schizophrenia. Nat Med, 2006. 12(9): p. 1016-22. 20. Ross, C.A., et al., Neurobiology of schizophrenia. Neuron, 2006. 52(1): p. 139-53. 21. Hashimoto, K., et al., Possible role of D-serine in the pathophysiology of Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry, 2004. 28(2): p. 385-8. 22. Hashimoto, K., et al., Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry, 2003. 60(6): p. 572-6. 23. Labrie, V., et al., Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet, 2009. 18(17): p. 3227-43. 24. Diven, W.F., Studies on amino acid racemases. II. Purification and properties of the glutamate racemase from Lactobacillus fermenti. Biochim Biophys Acta, 1969. 191(3): p. 702-6. 25. Lamont, H.C., W.L. Staudenbauer, and J.L. Strominger, Partial purification and characterization of an aspartate racemase from Streptococcus faecalis. J Biol Chem, 1972. 247(16): p. 5103-6. 26. Cardinale, G.J. and R.H. Abeles, Purification and mechanism of action of proline racemase. Biochemistry, 1968. 7(11): p. 3970-8. 27. Grishin, N.V., M.A. Phillips, and E.J. Goldsmith, Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Protein Sci, 1995. 4(7): p. 1291-304. 28. Soda, K., T. Yoshimura, and N. Esaki, Stereospecificity for the hydrogen transfer of pyridoxal enzyme reactions. Chem Rec, 2001. 1(5): p. 373-84. 29. Mehta, P.K. and P. Christen, The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes. Adv Enzymol Relat Areas Mol Biol, 2000. 74: p.129-84. 30. Eliot, A.C. and J.F. Kirsch, Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem, 2004. 73: p.383-415. 31. Watanabe, A., et al., Reaction mechanism of alanine racemase from Bacillus stearothermophilus: x-ray crystallographic studies of the enzyme bound with N-(5'-phosphopyridoxyl)alanine. J Biol Chem, 2002. 277(21): p. 19166-72. 32. Smith, M.A., et al., The structure of mammalian serine racemase: evidence for conformational changes upon inhibitor binding. J Biol Chem, 2010. 285(17): p.12873-81. 33. Strisovsky, K., et al., Mouse brain serine racemase catalyzes specific elimination of L-serine to pyruvate. FEBS Lett, 2003. 535(1-3): p. 44-8. 34. De Miranda, J., et al., Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serine. Proc Natl Acad Sci U S A, 2002. 99(22): p. 14542-7. 35. Neidle, A. and D.S. Dunlop, Allosteric regulation of mouse brain serine racemase. Neurochem Res, 2002. 27(12): p. 1719-24. 36. Hoffman, H.E., et al., Recombinant human serine racemase: enzymologic characterization and comparison with its mouse ortholog. Protein Expr Purif, 2009. 63(1): p. 62-7. 37. De Miranda, J., et al., Human serine racemase: moleular cloning, genomic organization and functional analysis. Gene, 2000. 256(1-2): p. 183-8. 38. Foltyn, V.N., et al., Serine racemase modulates intracellular D-serine levels through an alpha,beta-elimination activity. J Biol Chem, 2005. 280(3): p. 1754-63. 39. Snell, K., Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv Enzyme Regul, 1984. 22: p. 325-400. 40. Reiber, H., Proceedings: Alpha, beta-elimination of serine: mechanism and catalysis of a model reaction and the consequences for the active centre of serine dehydratases. Hoppe Seylers Z Physiol Chem, 1974. 355(10): p. 1240. 41. Yamada, T., et al., Crystal structure of serine dehydratase from rat liver. Biochemistry, 2003. 42(44): p. 12854-65. 42. Hyde, C.C., et al., Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J Biol Chem, 1988. 263(33): p. 17857-71. 43. Sun, L., et al., Crystal structure of the pyridoxal-5'-phosphate-dependent serine dehydratase from human liver. Protein Sci, 2005. 14(3): p. 791-8. 44. Yoshimura, T. and M. Goto, D-amino acids in the brain: structure and function of pyridoxal phosphate-dependent amino acid racemases. FEBS J, 2008. 275(14): p. 3527-37. 45. Goto, M., et al., Crystal structure of a homolog of mammalian serine racemase from Schizosaccharomyces pombe. J Biol Chem, 2009. 284(38): p. 25944-52. 46. Dunlop, D.S., et al., The presence of free D-aspartic acid in rodents and man. Biochem Biophys Res Commun, 1986. 141(1): p. 27-32. 47. Hashimoto, A., et al., Free D-serine, D-aspartate and D-alanine in central nervous system and serum in mutant mice lacking D-amino acid oxidase. Neurosci Lett, 1993. 152(1-2): p. 33-6. 48. D'Aniello, A., et al., Involvement of D-aspartic acid in the synthesis of testosterone in rat testes. Life Sci, 1996. 59(2): p. 97-104. 49. Yamauchi, T., et al., Properties of aspartate racemase, a pyridoxal 5'-phosphate-independent amino acid racemase. J Biol Chem, 1992. 267(26): p. 18361-4. 50. Kim, P.M., et al., Aspartate racemase, generating neuronal D-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci U S A, 2010. 107(7): p. 3175-9. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46065 | - |
dc.description.abstract | 絲胺酸消旋酶主要功能是產生D-絲胺酸,D-絲胺酸是在腦部中的N-甲基,D-天門冬胺受體 (NMDARs)之共促效劑 (co-agonist),哺乳類動物的絲胺酸消旋酶可將L 及D-絲胺酸互相轉換,也可將L 及D-絲胺酸脫水轉變成丙酮酸。我們觀察到絲胺酸消旋酶和人體中另一個酵素絲胺酸脫水酶在蛋白質序列上只有23 %的相似性但結構上相似度很高,但絲胺酸脫水酶卻只有一種將L-絲胺酸轉變成丙酮酸的功能。它們之間的關係引發了我們高度興趣。在蛋白質序列比對分析中,指出在絲胺酸消旋酶催化活性中心的第84 號絲胺酸相對位置於絲胺酸脫水酶催化活性中心的第65 號丙胺酸。此兩酵素活化反應皆需要輔因子Pyridoxal 5’phophate (PLP),在沒有受質存在情況下會和酵素上的離胺酸形成Schiff base,當受質存在時會取代離胺酸和PLP 形成Schiff base。為了要深入探討兩酵素之間的關係,我們將絲胺酸消旋酶的第84 號絲胺酸突變成丙胺酸,結果發現其完全失去消旋作用,僅存在可將L-絲胺酸轉變成丙酮酸的功能。反之思考若將絲胺酸脫水酶中的第65 號丙胺酸突變成絲胺酸,是否可以使其增加消旋作用的活性。結果顯示其能夠增加利用D-絲胺酸轉變成丙酮酸的功能,因為原本是丙胺酸無法成為催化鹼去攻擊D-絲胺酸在Cα 上的氫原子,當其成為絲胺酸時即可成為催化鹼,額外增加利用D-絲胺酸為受質的功能。而為了能夠更加了解其作用機制,我們解出了胺酸脫水酶第65 號丙胺酸突變
成絲胺酸的結構。從活性分析及結構資料中,我們了解到絲胺酸消旋酶的第84 號絲胺酸所在的方位對於在消旋作用以及D-絲胺酸利用中扮演很重要的角色,並提供了對其作用機制更深入的了解。 | zh_TW |
dc.description.abstract | Serine racemase catalyzes the production of D-serine, a co-agonist of the
NMDARs in the brain. Mammalian serine racemase is involved in the reversible conversion of L- to D-serine, as well as the dehydration activity toward L- and Dserine. We observed human serine racemase gene shows 23% identity with that of the human serine dehydratase (SD), which catalyzes the dehydration of L-serine to yield ammonia and pyruvate. Sequence alignment shows that the corresponding residue Ala65 in the human serine dehydratase is aligned with the catalytic Ser84 in the human serine racemase. One such mutant protein is a serine to alanine substitution at residue 84, located at the active site of human serine racemase. The S84A mutation caused the loss of isomerization activity and D-serine dehydratase of serine racemase. Whereas it retained the capability to act as an L-serine dehydratase activity. The single mutant of human serine dehydratase A65S protein increased 5-fold D-serine dehydratase activity at pH=9. To improve our understanding of the relationship between human serine racemase and human serine dehydratase mechanism, we have determined the X-ray crystal structure of the human serine dehydratase A65S mutant protein at 1.54Å resolution. Our results show that the S84 residue in human serine racemase, proximity to the substrate in an ideal orientation, plays an important role in shuttling the proton required for isomerization. The biological activity analysis of target mutagenesis and useful structural information have paved the way for mechanistic studies and have provided a framework for interpretation of those results. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:52:50Z (GMT). No. of bitstreams: 1 ntu-99-R97b46028-1.pdf: 35869170 bytes, checksum: 768e3fe5216978b7c8599409a21e5d82 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 中文摘要.................................i
Abstract......................................ii List of Figures...............................iii List of Tables..............................v Introduction..............................1 Material and Methods........................... 6 2.1 Bacterial expression and purification of recombinant protein....6 2.11 Human serine racemase (HSR)................6 2.12 Human L-serine dehydratase (HSD).................7 2.13 The mutants of HSR and HSD.......................8 2.2 Crystallization and Data collection ........8 2.3 Structural Determination and Refinement.................8 2.4 Enzyme activity assay .............................9 2.41 HSR isomerization activity........................9 2.42 HSR dehydration activity.........................9 2.43 HSD dehydration activity in different pH..................10 2.5 Molecular Modeling and Substrate Docking.....................10 2.6 Western Blot analysis...........................11 2.7 Immunization of rabbits and assays..........................11 2.8 Mass Spectrometry Analysis........................12 Results and discussions............................13 3.1 Protein Expression and Purification......................13 3.11Human Serine Racemase .........................13 3.12 Human Serine Dehydratase........................14 3.13 Mutants Protein of Serine Racemase S84A And Serine Dehydratase A65S.......14 3.2. Overall Structure.............................14 3.3 Structural Similarity Analysis.........................16 3.4. The Catalytic Centers.........................16 3.5. Enzyme activity assay........................17 3.6 Docking of the substrates into the active site of HSD A65S.........19 Conclusion.............21 References.............................23 Figures................................29 Tables..................................55 | |
dc.language.iso | en | |
dc.title | 利用定點突變方法改變人類絲胺酸消旋酶及絲胺酸脫水酶之酵素功能 | zh_TW |
dc.title | Switching the function of PLP-dependent human serine racemase to serine dehydratase and vice versa by point mutation | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳光超(Guang-Chao Chen),蕭傳鐙(Chwan-Deng Hsiao) | |
dc.subject.keyword | 絲胺酸消旋酶,絲胺酸脫水酶,PLP,D-天門冬胺受體,X 光繞射結構, | zh_TW |
dc.subject.keyword | serine racemase,serine dehydratase,pyridoxal 5’-phosphate,NMDAR,X- ray diffraction, | en |
dc.relation.page | 59 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-30 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 35.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。