Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46040
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余佳慧(Chia-Hui Yu)
dc.contributor.authorChi-Yun Chenen
dc.contributor.author陳霽雲zh_TW
dc.date.accessioned2021-06-15T04:52:06Z-
dc.date.available2013-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-07-31
dc.identifier.citation1. Yu LC, Turner JR, Buret AG. LPS/CD14 activation triggers SGLT-1-mediated glucose uptake and cell rescue in intestinal epithelial cells via early apoptotic signals upstream of caspase-3. Exp Cell Res 2006;312:3276-86.
2. Yu LC, Flynn AN, Turner JR, Buret AG. SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: a novel cellular rescue mechanism? FASEB J 2005;19:1822-35.
3. Robertson AM, Wright DP. Bacterial glycosulphatases and sulphomucin degradation. Can J Gastroenterol 1997;11:361-6.
4. Fontaine N, Meslin JC, Lory S, Andrieux C. Intestinal mucin distribution in the germ-free rat and in the heteroxenic rat harbouring a human bacterial flora: effect of inulin in the diet. Br J Nutr 1996;75:881-92.
5. Lodish HF. Molecular cell biology. W.H. Freeman, 2000.
6. Hollander D. The intestinal permeability barrier. A hypothesis as to its regulation and involvement in Crohn's disease. Scand J Gastroenterol 1992;27:721-6.
7. Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J. Restoration of barrier function in injured intestinal mucosa. Physiol Rev 2007;87:545-64.
8. Laukoetter MG, Bruewer M, Nusrat A. Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr Opin Gastroenterol 2006;22:85-9.
9. Niessen CM. Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 2007;127:2525-32.
10. Fasano A, Nataro JP. Intestinal epithelial tight junctions as targets for enteric bacteria-derived toxins. Adv Drug Deliv Rev 2004;56:795-807.
11. Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, Innis-Whitehouse W, Eastburn KK, Madara JL. Tight junctions are membrane microdomains. J Cell Sci 2000;113 ( Pt 10):1771-81.
12. Somlyo AP, Somlyo AV. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol 2000;522 Pt 2:177-85.
13. Sahl HG, Pag U, Bonness S, Wagner S, Antcheva N, Tossi A. Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol 2005;77:466-75.
14. Ouellette AJ, Hsieh MM, Nosek MT, Cano-Gauci DF, Huttner KM, Buick RN, Selsted ME. Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect Immun 1994;62:5040-7.
15. Zhang P, Summer WR, Bagby GJ, Nelson S. Innate immunity and pulmonary host defense. Immunol Rev 2000;173:39-51.
16. Parikh AA, Moon MR, Kane CD, Salzman AL, Fischer JE, Hasselgren PO. Interleukin-6 production in human intestinal epithelial cells increases in association with the heat shock response. J Surg Res 1998;77:40-4.
17. Jobin C, Holt L, Bradham CA, Streetz K, Brenner DA, Sartor RB. TNF receptor-associated factor-2 is involved in both IL-1 beta and TNF-alpha signaling cascades leading to NF-kappa B activation and IL-8 expression in human intestinal epithelial cells. J Immunol 1999;162:4447-54.
18. Teller IC, Beaulieu JF. Interactions between laminin and epithelial cells in intestinal health and disease. Expert Rev Mol Med 2001;3:1-18.
19. Watson AJ, Chu S, Sieck L, Gerasimenko O, Bullen T, Campbell F, McKenna M, Rose T, Montrose MH. Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology 2005;129:902-12.
20. Madara JL. Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: physiological rearrangement of tight junctions. J Membr Biol 1990;116:177-84.
21. Panaro MA, Cianciulli A, Mitolo V, Mitolo CI, Acquafredda A, Brandonisio O, Cavallo P. Caspase-dependent apoptosis of the HCT-8 epithelial cell line induced by the parasite Giardia intestinalis. FEMS Immunol Med Microbiol 2007;51:302-9.
22. Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2006;2:e135.
23. Bojarski C, Weiske J, Schoneberg T, Schroder W, Mankertz J, Schulzke JD, Florian P, Fromm M, Tauber R, Huber O. The specific fates of tight junction proteins in apoptotic epithelial cells. J Cell Sci 2004;117:2097-107.
24. Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol 2001;13:555-62.
25. Bursch W, Ellinger A, Gerner C, Frohwein U, Schulte-Hermann R. Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci 2000;926:1-12.
26. Lawen A. Apoptosis-an introduction. Bioessays 2003;25:888-96.
27. Zheng Y, Shi Y, Tian C, Jiang C, Jin H, Chen J, Almasan A, Tang H, Chen Q. Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide. Oncogene 2004;23:1239-47.
28. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999;399:483-7.
29. Ramachandran A, Madesh M, Balasubramanian KA. Apoptosis in the intestinal epithelium: its relevance in normal and pathophysiological conditions. J Gastroenterol Hepatol 2000;15:109-20.
30. Renehan AG, O'Dwyer ST, Haboubi NJ, Potten CS. Early cellular events in colorectal carcinogenesis. Colorectal Dis 2002;4:76-89.
31. Oumouna-Benachour K, Oumouna M, Zerfaoui M, Hans C, Fallon K, Boulares AH. Intrinsic resistance to apoptosis of colon epithelial cells is a potential determining factor in the susceptibility of the A/J mouse strain to dimethylhydrazine-induced colon tumorigenesis. Mol Carcinog 2007;46:993-1002.
32. Su LK, Vogelstein B, Kinzler KW. Association of the APC tumor suppressor protein with catenins. Science 1993;262:1734-7.
33. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999;398:422-6.
34. Orford K, Orford CC, Byers SW. Exogenous expression of beta-catenin regulates contact inhibition, anchorage-independent growth, anoikis, and radiation-induced cell cycle arrest. J Cell Biol 1999;146:855-68.
35. Chen S, Guttridge DC, You Z, Zhang Z, Fribley A, Mayo MW, Kitajewski J, Wang CY. Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription. J Cell Biol 2001;152:87-96.
36. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA, McCubrey JA. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003;17:590-603.
37. Yang WC, Mathew J, Velcich A, Edelmann W, Kucherlapati R, Lipkin M, Yang K, Augenlicht LH. Targeted inactivation of the p21(WAF1/cip1) gene enhances Apc-initiated tumor formation and the tumor-promoting activity of a Western-style high-risk diet by altering cell maturation in the intestinal mucosal. Cancer Res 2001;61:565-9.
38. Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S, Kucherlapati R, Lipkin M, Yang K, Augenlicht L. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 2002;295:1726-9.
39. Nenci A, Becker C, Wullaert A, Gareus R, van Loo G, Danese S, Huth M, Nikolaev A, Neufert C, Madison B, Gumucio D, Neurath MF, Pasparakis M. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 2007;446:557-61.
40. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004;118:285-96.
41. El-Omar EM. The importance of interleukin 1beta in Helicobacter pylori associated disease. Gut 2001;48:743-7.
42. Quante M, Wang TC. Inflammation and stem cells in gastrointestinal carcinogenesis. Physiology (Bethesda) 2008;23:350-9.
43. Selgrad M, Malfertheiner P, Fini L, Goel A, Boland CR, Ricciardiello L. The role of viral and bacterial pathogens in gastrointestinal cancer. J Cell Physiol 2008;216:378-88.
44. Apidianakis Y, Pitsouli C, Perrimon N, Rahme L. Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A 2009.
45. Tlaskalova-Hogenova H, Stepankova R, Hudcovic T, Tuckova L, Cukrowska B, Lodinova-Zadnikova R, Kozakova H, Rossmann P, Bartova J, Sokol D, Funda DP, Borovska D, Rehakova Z, Sinkora J, Hofman J, Drastich P, Kokesova A. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 2004;93:97-108.
46. Saemann MD, Bohmig GA, Zlabinger GJ. Short-chain fatty acids: bacterial mediators of a balanced host-microbial relationship in the human gut. Wien Klin Wochenschr 2002;114:289-300.
47. Wilson M, McNab R, Henderson B. Bacterial disease mechanisms : an introduction to cellular microbiology. Cambridge University Press, 2002.
48. Resta SC. Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. J Physiol 2009;587:4169-74.
49. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001;291:881-4.
50. Nanthakumar NN, Dai D, Newburg DS, Walker WA. The role of indigenous microflora in the development of murine intestinal fucosyl- and sialyltransferases. FASEB J 2003;17:44-6.
51. Cario E, Brown D, McKee M, Lynch-Devaney K, Gerken G, Podolsky DK. Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol 2002;160:165-73.
52. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 2003;4:269-73.
53. Pena JA, Versalovic J. Lactobacillus rhamnosus GG decreases TNF-alpha production in lipopolysaccharide-activated murine macrophages by a contact-independent mechanism. Cell Microbiol 2003;5:277-85.
54. Willing BP, Van Kessel AG. Enterocyte proliferation and apoptosis in the caudal small intestine is influenced by the composition of colonizing commensal bacteria in the neonatal gnotobiotic pig. J Anim Sci 2007;85:3256-66.
55. Shirkey TW, Siggers RH, Goldade BG, Marshall JK, Drew MD, Laarveld B, Van Kessel AG. Effects of commensal bacteria on intestinal morphology and expression of proinflammatory cytokines in the gnotobiotic pig. Exp Biol Med (Maywood) 2006;231:1333-45.
56. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004;118:229-41.
57. Fukata M, Michelsen KS, Eri R, Thomas LS, Hu B, Lukasek K, Nast CC, Lechago J, Xu R, Naiki Y, Soliman A, Arditi M, Abreu MT. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol 2005;288:G1055-65.
58. Jones NL, Islur A, Haq R, Mascarenhas M, Karmali MA, Perdue MH, Zanke BW, Sherman PM. Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the Bcl-2 family. Am J Physiol Gastrointest Liver Physiol 2000;278:G811-9.
59. Rietschel ET, Schade U, Jensen M, Wollenweber HW, Luderitz O, Greisman SG. Bacterial endotoxins: chemical structure, biological activity and role in septicaemia. Scand J Infect Dis Suppl 1982;31:8-21.
60. Janeway CA, Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989;54 Pt 1:1-13.
61. Medzhitov R, Janeway CA, Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997;91:295-8.
62. Finberg RW, Re F, Popova L, Golenbock DT, Kurt-Jones EA. Cell activation by Toll-like receptors: role of LBP and CD14. J Endotoxin Res 2004;10:413-8.
63. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 1999;189:1777-82.
64. Alexander C, Rietschel ET. Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 2001;7:167-202.
65. Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ. Structure and function of lipopolysaccharide binding protein. Science 1990;249:1429-31.
66. Triantafilou M, Miyake K, Golenbock DT, Triantafilou K. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 2002;115:2603-11.
67. da Silva Correia J, Soldau K, Christen U, Tobias PS, Ulevitch RJ. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J Biol Chem 2001;276:21129-35.
68. Gioannini TL, Teghanemt A, Zhang D, Coussens NP, Dockstader W, Ramaswamy S, Weiss JP. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci U S A 2004;101:4186-91.
69. Frey EA, Miller DS, Jahr TG, Sundan A, Bazil V, Espevik T, Finlay BB, Wright SD. Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med 1992;176:1665-71.
70. Pugin J, Schurer-Maly CC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A 1993;90:2744-8.
71. Wright SD. CD14 and innate recognition of bacteria. J Immunol 1995;155:6-8.
72. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990;249:1431-3.
73. Stelter F, Pfister M, Bernheiden M, Jack RS, Bufler P, Engelmann H, Schutt C. The myeloid differentiation antigen CD14 is N- and O-glycosylated. Contribution of N-linked glycosylation to different soluble CD14 isoforms. Eur J Biochem 1996;236:457-64.
74. Bufler P, Stiegler G, Schuchmann M, Hess S, Kruger C, Stelter F, Eckerskorn C, Schutt C, Engelmann H. Soluble lipopolysaccharide receptor (CD14) is released via two different mechanisms from human monocytes and CD14 transfectants. Eur J Immunol 1995;25:604-10.
75. Landmann R, Zimmerli W, Sansano S, Link S, Hahn A, Glauser MP, Calandra T. Increased circulating soluble CD14 is associated with high mortality in gram-negative septic shock. J Infect Dis 1995;171:639-44.
76. Martin TR, Rubenfeld GD, Ruzinski JT, Goodman RB, Steinberg KP, Leturcq DJ, Moriarty AM, Raghu G, Baughman RP, Hudson LD. Relationship between soluble CD14, lipopolysaccharide binding protein, and the alveolar inflammatory response in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 1997;155:937-44.
77. Julius P, Grosse-Thie C, Kuepper M, Bratke K, Virchow JC. sCD14 in bronchoalveolar lavage 18, 42 and 162 hours after segmental allergen provocation. Scand J Immunol 2010;71:304-11.
78. Landmann R, Reber AM, Sansano S, Zimmerli W. Function of soluble CD14 in serum from patients with septic shock. J Infect Dis 1996;173:661-8.
79. Becker MN, Diamond G, Verghese MW, Randell SH. CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem 2000;275:29731-6.
80. Chui JJ, Li MW, Di Girolamo N, Chang JH, McCluskey PJ, Wakefield D. Iris pigment epithelial cells express a functional lipopolysaccharide receptor complex. Invest Ophthalmol Vis Sci 2010;51:2558-67.
81. Kawahara T, Teshima S, Oka A, Sugiyama T, Kishi K, Rokutan K. Type I Helicobacter pylori lipopolysaccharide stimulates toll-like receptor 4 and activates mitogen oxidase 1 in gastric pit cells. Infect Immun 2001;69:4382-9.
82. Martin-Villa JM, Ferre-Lopez S, Lopez-Suarez JC, Corell A, Perez-Blas M, Arnaiz-Villena A. Cell surface phenotype and ultramicroscopic analysis of purified human enterocytes: a possible antigen-presenting cell in the intestine. Tissue Antigens 1997;50:586-92.
83. Abreu MT, Arnold ET, Thomas LS, Gonsky R, Zhou Y, Hu B, Arditi M. TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J Biol Chem 2002;277:20431-7.
84. Otte JM, Cario E, Podolsky DK. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 2004;126:1054-70.
85. Szebeni B, Veres G, Dezsofi A, Rusai K, Vannay A, Mraz M, Majorova E, Arato A. Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease. Clin Exp Immunol 2008;151:34-41.
86. Toiyama Y, Araki T, Yoshiyama S, Hiro J, Miki C, Kusunoki M. The expression patterns of Toll-like receptors in the ileal pouch mucosa of postoperative ulcerative colitis patients. Surg Today 2006;36:287-90.
87. Frolova L, Drastich P, Rossmann P, Klimesova K, Tlaskalova-Hogenova H. Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. J Histochem Cytochem 2008;56:267-74.
88. Doan HQ, Bowen KA, Jackson LA, Evers BM. Toll-like receptor 4 activation increases Akt phosphorylation in colon cancer cells. Anticancer Res 2009;29:2473-8.
89. Wang EL, Qian ZR, Nakasono M, Tanahashi T, Yoshimoto K, Bando Y, Kudo E, Shimada M, Sano T. High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer 2010;102:908-15.
90. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000;68:7010-7.
91. Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 2000;164:966-72.
92. Bocker U, Yezerskyy O, Feick P, Manigold T, Panja A, Kalina U, Herweck F, Rossol S, Singer MV. Responsiveness of intestinal epithelial cell lines to lipopolysaccharide is correlated with Toll-like receptor 4 but not Toll-like receptor 2 or CD14 expression. Int J Colorectal Dis 2003;18:25-32.
93. Abreu MT, Vora P, Faure E, Thomas LS, Arnold ET, Arditi M. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol 2001;167:1609-16.
94. Suzuki M, Hisamatsu T, Podolsky DK. Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular Toll-like receptor 4-MD-2 complex. Infect Immun 2003;71:3503-11.
95. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999;162:3749-52.
96. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282:2085-8.
97. Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 1999;401:811-5.
98. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4:499-511.
99. Subclavian. Toll-like receptor pathways revised, 2007.
100. Takeda K, Akira S. Toll-like receptors. Curr Protoc Immunol 2007;Chapter 14:Unit 14 12.
101. Hoshino K, Kaisho T, Iwabe T, Takeuchi O, Akira S. Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation. Int Immunol 2002;14:1225-31.
102. Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 1997;7:837-47.
103. Li S, Strelow A, Fontana EJ, Wesche H. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci U S A 2002;99:5567-72.
104. Burns K, Janssens S, Brissoni B, Olivos N, Beyaert R, Tschopp J. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 2003;197:263-8.
105. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1. Nature 1996;383:443-6.
106. Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol 2002;22:7158-67.
107. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K. TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 1996;272:1179-82.
108. Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, Matsumoto K. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 2000;5:649-58.
109. Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000;103:351-61.
110. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 2001;412:346-51.
111. Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, Maniatis T. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 1995;9:1586-97.
112. Li X, Tupper JC, Bannerman DD, Winn RK, Rhodes CJ, Harlan JM. Phosphoinositide 3 kinase mediates Toll-like receptor 4-induced activation of NF-kappa B in endothelial cells. Infect Immun 2003;71:4414-20.
113. Wong F, Hull C, Zhande R, Law J, Karsan A. Lipopolysaccharide initiates a TRAF6-mediated endothelial survival signal. Blood 2004;103:4520-6.
114. Ojaniemi M, Glumoff V, Harju K, Liljeroos M, Vuori K, Hallman M. Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur J Immunol 2003;33:597-605.
115. O'Neill LA, Dunne A, Edjeback M, Gray P, Jefferies C, Wietek C. Mal and MyD88: adapter proteins involved in signal transduction by Toll-like receptors. J Endotoxin Res 2003;9:55-9.
116. Zhang FX, Kirschning CJ, Mancinelli R, Xu XP, Jin Y, Faure E, Mantovani A, Rothe M, Muzio M, Arditi M. Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem 1999;274:7611-4.
117. Vogel S, Hirschfeld MJ, Perera PY. Signal integration in lipopolysaccharide (LPS)-stimulated murine macrophages. J Endotoxin Res 2001;7:237-41.
118. Oshiumi H, Sasai M, Shida K, Fujita T, Matsumoto M, Seya T. TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta. J Biol Chem 2003;278:49751-62.
119. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1999;11:115-22.
120. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 2003;4:1144-50.
121. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003;4:491-6.
122. Sasai M, Oshiumi H, Matsumoto M, Inoue N, Fujita F, Nakanishi M, Seya T. Cutting Edge: NF-kappaB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation. J Immunol 2005;174:27-30.
123. Chow CW, Grinstein S, Rotstein OD. Signaling events in monocytes and macrophages. New Horiz 1995;3:342-51.
124. Liu MK, Herrera-Velit P, Brownsey RW, Reiner NE. CD14-dependent activation of protein kinase C and mitogen-activated protein kinases (p42 and p44) in human monocytes treated with bacterial lipopolysaccharide. J Immunol 1994;153:2642-52.
125. Sweet MJ, Hume DA. Endotoxin signal transduction in macrophages. J Leukoc Biol 1996;60:8-26.
126. Cuschieri J, Billgren J, Maier RV. Phosphatidylcholine-specific phospholipase C (PC-PLC) is required for LPS-mediated macrophage activation through CD14. J Leukoc Biol 2006;80:407-14.
127. Cuschieri J, Bulger E, Billgrin J, Garcia I, Maier RV. Acid sphingomyelinase is required for lipid Raft TLR4 complex formation. Surg Infect (Larchmt) 2007;8:91-106.
128. Cuschieri J, Umanskiy K, Solomkin J. PKC-zeta is essential for endotoxin-induced macrophage activation. J Surg Res 2004;121:76-83.
129. Monick MM, Carter AB, Gudmundsson G, Mallampalli R, Powers LS, Hunninghake GW. A phosphatidylcholine-specific phospholipase C regulates activation of p42/44 mitogen-activated protein kinases in lipopolysaccharide-stimulated human alveolar macrophages. J Immunol 1999;162:3005-12.
130. Dorland WAN. Dorland's Medical dictionary. Saunders Press ;
distributed by Holt, Rinehart & Winston, 1980.
131. Bilina C. Dorland's electronic medical dictionary, 28th ed. Laboratory Medicine 2000;31:51-51.
132. Grove RI, Allegretto NJ, Kiener PA, Warr GA. Lipopolysaccharide (LPS) alters phosphatidylcholine metabolism in elicited peritoneal macrophages. J Leukoc Biol 1990;48:38-42.
133. Perry RJ, Ridgway ND. Molecular mechanisms and regulation of ceramide transport. Biochim Biophys Acta 2005;1734:220-34.
134. Lin CF, Chen CL, Lin YS. Ceramide in apoptotic signaling and anticancer therapy. Curr Med Chem 2006;13:1609-16.
135. Hannun YA, Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol 2000;10:73-80.
136. Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 2004;4:604-16.
137. Marchesini N, Hannun YA. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol 2004;82:27-44.
138. Kilkus J, Goswami R, Testai FD, Dawson G. Ceramide in rafts (detergent-insoluble fraction) mediates cell death in neurotumor cell lines. J Neurosci Res 2003;72:65-75.
139. MacKichan ML, DeFranco AL. Role of ceramide in lipopolysaccharide (LPS)-induced signaling. LPS increases ceramide rather than acting as a structural homolog. J Biol Chem 1999;274:1767-75.
140. Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M. TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced 'acidic' sphingomyelin breakdown. Cell 1992;71:765-76.
141. Muller G, Ayoub M, Storz P, Rennecke J, Fabbro D, Pfizenmaier K. PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J 1995;14:1961-9.
142. Fox TE, Houck KL, O'Neill SM, Nagarajan M, Stover TC, Pomianowski PT, Unal O, Yun JK, Naides SJ, Kester M. Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J Biol Chem 2007;282:12450-7.
143. Hu J, Jacinto R, McCall C, Li L. Regulation of IL-1 receptor-associated kinases by lipopolysaccharide. J Immunol 2002;168:3910-4.
144. Kanashiro CA, Khalil RA. Signal transduction by protein kinase C in mammalian cells. Clin Exp Pharmacol Physiol 1998;25:974-85.
145. Hug H, Sarre TF. Protein kinase C isoenzymes: divergence in signal transduction? Biochem J 1993;291 ( Pt 2):329-43.
146. Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochem J 1998;332 ( Pt 2):281-92.
147. Ron D, Kazanietz MG. New insights into the regulation of protein kinase C and novel phorbol ester receptors. FASEB J 1999;13:1658-76.
148. Moscat J, Diaz-Meco MT. The atypical protein kinase Cs. Functional specificity mediated by specific protein adapters. EMBO Rep 2000;1:399-403.
149. Coussens L, Parker PJ, Rhee L, Yang-Feng TL, Chen E, Waterfield MD, Francke U, Ullrich A. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science 1986;233:859-66.
150. Newton AC. Protein kinase C: structure, function, and regulation. J Biol Chem 1995;270:28495-8.
151. House C, Kemp BE. Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science 1987;238:1726-8.
152. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992;258:607-14.
153. Hirai T, Chida K. Protein kinase Czeta (PKCzeta): activation mechanisms and cellular functions. J Biochem 2003;133:1-7.
154. Newton AC. Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev 2001;101:2353-64.
155. Nakanishi H, Brewer KA, Exton JH. Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1993;268:13-6.
156. Limatola C, Schaap D, Moolenaar WH, van Blitterswijk WJ. Phosphatidic acid activation of protein kinase C-zeta overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. Biochem J 1994;304 ( Pt 3):1001-8.
157. Keranen LM, Dutil EM, Newton AC. Protein kinase C is regulated in vivo by three functionally distinct phosphorylations. Curr Biol 1995;5:1394-1403.
158. Ponting CP, Ito T, Moscat J, Diaz-Meco MT, Inagaki F, Sumimoto H. OPR, PC and AID: all in the PB1 family. Trends Biochem Sci 2002;27:10.
159. Ways DK, Cook PP, Webster C, Parker PJ. Effect of phorbol esters on protein kinase C-zeta. J Biol Chem 1992;267:4799-805.
160. Standaert ML, Bandyopadhyay G, Kanoh Y, Sajan MP, Farese RV. Insulin and PIP3 activate PKC-zeta by mechanisms that are both dependent and independent of phosphorylation of activation loop (T410) and autophosphorylation (T560) sites. Biochemistry 2001;40:249-55.
161. Izumi Y, Hirose T, Tamai Y, Hirai S, Nagashima Y, Fujimoto T, Tabuse Y, Kemphues KJ, Ohno S. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J Cell Biol 1998;143:95-106.
162. Tomson FL, Koutsouris A, Viswanathan VK, Turner JR, Savkovic SD, Hecht G. Differing roles of protein kinase C-zeta in disruption of tight junction barrier by enteropathogenic and enterohemorrhagic Escherichia coli. Gastroenterology 2004;127:859-69.
163. Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 2007;9:804-16.
164. Bandyopadhyay G, Standaert ML, Sajan MP, Karnitz LM, Cong L, Quon MJ, Farese RV. Dependence of insulin-stimulated glucose transporter 4 translocation on 3-phosphoinositide-dependent protein kinase-1 and its target threonine-410 in the activation loop of protein kinase C-zeta. Mol Endocrinol 1999;13:1766-72.
165. Parker PJ, Parkinson SJ. AGC protein kinase phosphorylation and protein kinase C. Biochem Soc Trans 2001;29:860-3.
166. Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46040-
dc.description.abstract背景:脂多醣 (lipopolysacchraide, LPS)為格蘭氏陰性菌細胞外膜的組成成份之一。當免疫細胞(如:單核球、巨噬細胞)透過其細胞表面的 LPS受器複合體 (receptor complex)—CD14/TLR4/MD2辨認出 LPS時,會誘導促發炎 (proinflammatory)反應的發生。然而, CD14與 TLR4在人類腸道上皮細胞截然不同的表現型態似乎正顯示著一項腸腔之所以能夠容忍腸道共生菌叢存在的機制。本實驗室先前的研究已發現,自腔面 (luminal side)給予 LPS刺激會導致人類腸道上皮細胞株 Caco-2的凋亡與緊密連結 (tight junction)的斷裂1-2;但是這些反應與 TLR4訊息傳導途徑無關(未發表之實驗結果)。近期於免疫細胞的研究證據指出,LPS和其細胞膜表面的 CD14分子的結合後,將啟動一串脂質第二傳訊分子的傳導途徑。磷脂膽鹼磷脂酶 C (phosphatidylcholine-specific phospholipase C, PC-PLC)的活化可造成甘油二酯 (diacylglycerol, DAG)的生成,進一步催化神經磷脂酶 (sphingomyelinase, SMase)的活化,使其將神經磷脂 (sphingomyelin)轉化成神經醯胺 (ceramide)。 Ceramide的產生將活化蛋白質激酶 Cζ (protein kinase Cζ, PKCζ),並導致 TLR4被趨化至脂筏上,以和 CD14形成受器複合體。已知 Ceramide和 PKCζ在許多種類的上皮細胞中均與促凋亡 (pro-apoptotic)反應有關。然而, CD14媒介的訊息傳遞是否參與 LPS所誘導的腸道上皮細胞凋亡反應目前尚未可知。材料與方法:採用長至全滿之 Caco-2細胞株 (C2BBe clone),自其腔面給予數個不同濃度與不同時間點的 LPS刺激;而某些組別在 LPS刺激前先以藥物性抑制劑,包括 D609 (PC-PLC抑制劑)、鹽酸丙咪嗪 (imipramine,SMase抑制劑)、 Gö6983(廣效性的 PKC抑制劑)與抑制性的 PKCζ偽受質 (inhibitory PKCζ pseudosubstrate)預處理細胞。細胞凋亡的現象透過缺口末端標記技術來觀察,並以細胞凋亡酶連免疫分析法來量化之。 PKCζ的活化狀態以免疫螢光共軛焦顯微鏡技術與西方轉漬法來分析。並使用極致液相層析—連續質譜儀系統 (Ultra-performance liquid chromatography–tandem mass spectrometry, UPLC—MS/MS)來偵測ceramide的產生。 CD14與 TLR4的蛋白質和 mRNA表現量則使用免疫螢光染色法和反轉錄酶-聚合酶鏈反應來檢驗之。實驗結果:無論在 LPS刺激前或刺激後, Caco-2細胞頂腔面 (apical)的 CD14蛋白質染色結果表現穩定,而 TLR4蛋白質則始終付之闕如。自腔面給予 Caco-2細胞 LPS的刺激可誘導其發生凋亡反應,且凋亡的程度有時間與劑量依賴性(time and dose-dependent)。藥物性抑制劑 D609、 imipramine、 Gö6983和 inhibitory PKCζ pseudosubstrate的預處理可有效減少受 LPS刺激增加的細胞凋亡程度。 Ceramide (C16)的產量在 LPS刺激後亦有顯著的增加。此外, LPS可引發胞內 PKCζ蛋白質的磷酸化,並促進其移位 (translocation)至細胞表面,而與緊密連結有共位 (colocalization)的現象;更甚者,這些現象也會被D609與 imipramine的預處理所抑制。結論: LPS誘導的腸道上皮細胞凋亡與 CD14媒介的訊息傳導途徑,如 ceramide與 PKCζ有關。zh_TW
dc.description.abstractBackground: Lipopolysaccharide (LPS) is a component of the outer membrane of Gram (-) bacteria. Proinflammatory responses are mounted by immune cells (e.g. monocyte/macrophage) following LPS recognition by its receptor complex (CD14/TLR4/MD2) on cell surface. However, distinct expression patterns of CD14 and TLR4 were characterized on human intestinal epithelial cells, which were suggested as a mechanism to tolerate against commensal bacteria in the gut lumen. Previous studies from our laboratory have demonstrated that luminal LPS challenge induced epithelial cell apoptosis and tight junctional breakage in human intestinal Caco-2 cells1-2, of which the mechanism was independent of TLR4 signaling (unpublished data). Recent evidence on monocytic cell lineages showed that after LPS binding to membranous CD14, a cascade of lipid secondary messenger pathway occurred. Activation of phosphatidylcholine-specific phospholipase C (PC-PLC) caused the generation of diacylglycerol (DAG) which then catalyzed sphingomyelinase to convert sphingolipid to ceramide. Formation of ceramide activated PKCζ leading to recruitment of TLR4 to lipid rafts to form a complex with CD14. Both ceramide and PKCζ were implicated in pro-apoptotic pathways in various epithelial cell types. It remains unknown whether CD14-mediated signals are involved in the mechanism of LPS-induced apoptosis in intestinal epithelial cells. Materials and methods: Caco-2 cells (C2BBe clone) were grown to confluency and apically challenged with LPS at various concentration and time points. In some groups, cells were pretreated with pharmacological inhibitors, such as D609 (a PC-PLC inhibitor), imipramine (a sphingomyelinase inhibitor), Gö6983 (a broad spectrum PKC inhibitor), or inhibitory PKCζ pseudosubstrate prior to LPS challenge. Cell apoptosis was assessed by TUNEL staining and quantified using a Cell Death ELISA kit. The activation status of PKCζ was examined by western blotting and immunofluorescent confocal microscopy. Production of ceramide was detected by Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC—MS/MS). The expression levels of CD14 and TLR4 proteins and mRNA were examined by immunofluorescent staining and RT-PCR. Results: Apical expression of CD14 and absence of TLR4 staining was confirmed on Caco-2 cells before and after LPS challenge. Exposure to luminal LPS increased the level of apoptosis in Caco-2 cells in a time- and dose-dependent manner. Pretreatment with D609, imipramine, Gö6983, and inhibitory PKCζ pseudosubstrate decreased the cell apoptotic levels induced by LPS. The level of ceramide (C16) was significantly elevated after LPS challenge. Moreover, LPS triggered increased phosphorylation and membrane translocation of cytosolic PKCζ to colocalize with tight junctions. The activation of PKCζ was blocked by pretreatment with D609 and imipramine. Conclusion: LPS-induced intestinal epithelial apoptosis is dependent on CD14-mediated signaling pathways such as ceramide and PKCζ.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:52:06Z (GMT). No. of bitstreams: 1
ntu-99-R96441004-1.pdf: 5796646 bytes, checksum: c555d20731444c8f20a53ffe03e5895f (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 IV
Abstract VI
名詞中英文縮寫對照表 VIII
目錄 XI
圖表目錄 XIV
一、前言 1
1、腸道上皮細胞概述 1
1.1 物理性屏障 1
1.2 化學性屏障 2
1.3免疫性屏障 2
2、腸道上皮細胞之新生與凋亡 3
2.1 腸道腺窩-絨毛軸 (crypt-villus axis) 3
2.2 細胞凋亡概述 4
2.3上皮細胞過量凋亡造成屏障功能喪失 6
2.4 上皮細胞凋亡不足為癌化原因之一 6
3、細菌對腸道上皮細胞替換率 (turnover rate)及細胞凋亡量之影響 7
3.1 正常腸腔共生菌叢 7
3.2 病原菌的感染 8
4、脂多醣受器複合體—CD14/TLR4/MD-2及其訊息傳導途徑 9
4.2 LPS受器複合體在免疫細胞上的表現 9
4.3 CD14 和TLR4在上皮細胞的表現 10
4.3.1 正常人和病人腸道檢體之上皮細胞 CD14 和 TLR4 表現 10
4.3.2 人類腸道上皮癌細胞株中的 CD14和 TLR4表現量和位置 11
5、 LPS訊息傳導途徑 12
5.1. TLR4下游的訊息傳導 12
5.2 CD14下游的訊息傳導 13
5.2.1 PLC 14
5.2.2 Ceramide 14
5.2.3 PKC 15
5.2.4 PKCζ 17
6. 腔面LPS刺激引發腸道上皮細胞之凋亡增加 18
6. 1 TLR4下游訊息傳導途徑與細胞凋亡之關係 18
6. 2 CD14下游訊息傳導途徑與細胞凋亡之關係 19
7、研究緣由及目的 20
二、材料與方法: 21
1、細胞培養 21
2、大腸桿菌脂多醣 (Lipopolysaccharide, LPS) 21
3、抑制劑 22
3.1 蛋白質激酶 C (Protein kinase C)抑制劑: 22
3.1.1 Gö6983 22
3.1.2 抑制性的蛋白質激酶 Cζ偽受質 (Inhibitory PKCζ pseudosubstrate (PKCζ-ps), myristoylated) 22
3.2 D609 23
3.3 Imipramine hydrochloride 23
4、核醣核酸的萃取與反轉錄酶—聚合酶鏈反應 (RNA Extraction & Reverse Transcription Polymerase Chain Reaction, RT-PCR) 24
4.1 核醣核酸的萃取 (RNA Extraction) 24
4.1.1 均質 (Homogenization) 24
4.1.2 相位分離 (Phase Seperation) 24
4.1.3 RNA沉澱反應 (RNA Precipitation) 24
4.1.4 清洗 RNA (RNA Wash) 24
4.1.5 回溶 RNA (Redissolving RNA) 25
4.2 反轉錄反應 (Reverse Transcription, RT) 25
4.3 聚合酶鏈反應 (Polymerase Chain Reaction, PCR) 25
4.4 膠體製備 (Gel Preparation) 26
4.5 電泳 (Electrophoresis) 26
5、缺口末端標記技術 (TdT-mediated dUTP-biotin Nick End Labeling, TUNEL assay) 27
6、細胞凋亡酶連免疫分析法 (Cell Death Detection ELISA) 28
7、蛋白質萃取暨西方轉漬分析法 (Protein Extraction and Western Blotting): 29
7.1 樣本製備:細胞質蛋白質之萃取 (Extraction of Cytoplasmic Proteins): 29
7.2 西方轉漬分析法 (Western Blotting) 29
7.2.1 膠體製備 (Gel Preparation) 29
7.2.2 電泳 (Gel Electrophoresis) 30
7.2.3 轉漬 (Transferring) 30
7.2.4 封鎖 (Blocking)、一級抗體與二級抗體免疫結合 31
7.2.5 呈色、影像擷取、半定量 31
8、免疫螢光染色 (Immunofluorescent Staining) 32
9、內生性神經醯胺分析 (Endogenous Ceramide Analysis): 33
9.1 脂質的萃取 (Lipid Extraction): 33
9.2 極致液相層析—連續質譜儀系統 (Ultra Performance Liquid Chromatography [UPLC]—Tandem Mass Spectrometry System): 34
9.2.1 實驗原理 34
9.2.2 儀器 35
9.2.3 待測脂質標準品之製備: 35
9.2.4操作條件 36
10、統計分析方法 (Statistics) 36
三、結果 37
1、 人類大腸上皮Caco-2細胞株有 CD14,而無 TLR4的表現 37
2、 自腔面給予 LPS刺激會造成 Caco-2細胞凋亡,並呈現劑量與時間依賴性 37
3、預處理 PC-PLC、 SMase、 PKCζ抑制劑可降低 LPS刺激造成的 Caco-2細胞凋亡量 38
4、 LPS的刺激可誘導 Caco-2細胞 C16 ceramide的增加 38
4.1 Caco-2細胞中可偵測到生理態 ceramide C16的表現 38
4.2 Caco-2細胞的 C16 ceramide隨 LPS的刺激而增加 39
5、 自腔面給予 LPS刺激造成 Caco-2細胞的 PKCζ之活化 39
四、討論 41
五、附圖與附表 46
六、參考文獻 66
圖表目錄
Table. 1 人類腸道上皮細胞檢體的 CD14與 TLR4表現。 46
Table. 2 各種碳鏈長度的 ceramide (C6、 C14、 C16、C18、 C20和 C24)的各項 UPLC-MS/MS參數。 47
Fig. 1 腸道上皮細胞的縱向剖面圖與緊密連結 (tight junction)的結構。 48
Fig. 2免疫細胞(單核球/巨噬細胞)的TLR4下游訊息傳導途徑。 49
Fig. 3 CD14下游的訊息傳導。 50
Fig. 4 Ceramide的分子結構模型與生成途徑。 51
Fig. 5 PKC的分子結構。 52
Fig. 6 PKCζ的分子結構與 PKCζ的活化過程。 53
Fig. 7 Ceramide的分子結構。 54
Fig. 8 Caco-2細胞的 CD14與 TLR4蛋白與 mRNA的表現量。 55
Fig. 9 腸腔面 LPS刺激可造成 Caco-2細胞的 DNA片段化,且此現象呈現劑量與時間依賴性。 56
Fig. 10 腸腔面 LPS的刺激可造成 Caco-2細胞凋亡。 57
Fig. 11 腸腔面 LPS刺激造成 Caco-2細胞凋亡增加的現象可被 D609、imipramine-HCl、 Gö6983與 PKCζ-ps所阻斷。 58
Fig. 12 各式 ceramide標準品的色層分析圖 (chromatogram)。 59
Fig. 13 Caco-2細胞的各式 ceramide色層分析圖。 60
Fig. 14 腸腔面 LPS刺激可引起 Caco-2細胞中的C16 ceramide含量增加。 61
Fig. 15 腸腔面 LPS刺激可引起 Caco-2細胞內磷酸化的 PKCζ (p-PKCζ)含量的增加。 62
Fig. 16 腸腔面 LPS刺激可增加Caco-2細胞的 p-PKCζ 細胞膜交接處表現。 63
Fig. 17 腸腔面 LPS刺激可引起 p-PKCζ分布到細胞膜附近,且此現象可被 D609與 imipramine-HCl所抑制。 64
Fig. 18 腸腔面 LPS刺激可引起 p-PKCζ聚集至細胞膜附近,並與 tight junction產生共位現象。 65
dc.language.isozh-TW
dc.title細菌脂多醣經由 CD14誘導腸道上皮細胞凋亡之訊息傳導路徑的探討zh_TW
dc.titleSignaling Pathways of LPS/CD14-induced Intestinal Epithelial Cell Apoptosisen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王錦堂(Jin-Town Wang),繆希椿(Shi-Chuen Miaw),徐立中(Li-Chung Hsu),游偉絢(Wei-Hsuan Yu)
dc.subject.keyword腸道上皮細胞,細菌脂多醣,CD14,Toll樣受器4,細胞凋亡,蛋白質激&#37238,Cζ,神經醯胺,zh_TW
dc.subject.keywordintestinal epithelial cell(IEC),lipopolysaccharide(LPS),CD14,TLR4,apoptosis,protein kinase Cζ (PKCζ),ceramide,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2010-08-02
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
5.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved