請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46003完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馮哲川 | |
| dc.contributor.author | Chien-Lin Huang | en |
| dc.contributor.author | 黃建霖 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:51:01Z | - |
| dc.date.available | 2011-08-05 | |
| dc.date.copyright | 2010-08-05 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-02 | |
| dc.identifier.citation | [1.1] W. Xie, D.C.Grillo, R.L.Gunshor, M. Kobayashi, H. Jeon, J. Ding, A.V. Nurmikko, G. C. Hua and N. Otsuka, Appl. Phys. Lett. 60, 1999 (1992).
[1.2] Dae-Kue Hwang, Soon-Hyung Kang, Jae-Hong Lim, Eun-Jeong Yang, Jin-Yong Oh, Jin-Ho Yang, and Seong-Ju Park, Appl. Phys. Lett. 86, 222101 (2005). [1.3] Koga K and Yamaguchi T, Prog. Crystal Growth Character 23, 127 (1991). [1.4] J. I. Pankove, E. A. Miller and J. E. Berkeyheiser, RCA Rev. 32, 283 (1971). [1.5] S. Nakamura et al., The Blue Laser Diodes (Spring, 1997), Chap.2. [1.6] R.W.G. Wyckoff, Crystal Structure , Volumes 1-4, (New York: Interscience Publishers) (1995). [1.7] S.Yoshida, S. Misawa, S. Gonda, “Epitaxial growth of GaN/AlN heterostructures,” J. Vac. Sci. Technol. B 1, 250 (1983). [1.8] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu and N. Sawaki, J.Cryst. Growth. 89, 209 (1989). [1.9] S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991). [1.10] F. Bertram, T. Riemann, J. Christen, A. Kaschner, A. Hoffmann, C. Thomsen, K. Hiramatsu, T. Shibata and N. Sawaki, “Strain relaxation and strong impurity incorporation in epitaxial laterally overgrown GaN: Direct imaging of different growth domains by cathodoluminescence microscopy and micro-Raman spectroscopy,” Appl. Phys. Lett. 74, 359 (1999). [1.11] S. Nakamura, M. Senoh, S Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,” Appl. Phys. Lett.72, 2014 (1998). [1.12] X. Y. Sun, R. Bommena, D. Burckel, A. Frauenglass, M. N. Fairchild, and S. R. J. Brueck, G. A. Garrett and M. Wraback, S. D. Hersee, “Defect reduction mechanisms in the nanoheteroepitaxy of GaN on SiC,” J. Appl. Phys. 95, 1450 (2004). [1.13] E. Valcheva, T. Paskova, I. G. Ivanov, R. Yakimova, Q. Wahab, S. Savage, N. Nordell, and C. I. Harris, “B implantation in 6H--SiC: Lattice damage recovery and implant activation upon high-temperature annealing,” J. Vac. Sci. Technol. B 17, 1040 (1999). [1.14] T. Detchprohm, K. Hiramatsu, H. Amano and I. Akasaki, “Hydride vapor phase epitaxial growth of a high quality GaN film using a ZnO buffer layer,” Appl. Phys. Lett. 61, 2688 (1992). [1.15] http://www.nec.co.jp/rd/Eng/innovative/E1/03.html [1.16] Y.S. Han, J.K. Shin, S.T. Kim, J. Appl. Phys. 90, 5731 (2001). [1.17] S. Iijima, Nature 354, 56 (1991). [1.18] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press (ICP), Imperial College London, (1998). [1.19] M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381, 678 (1996). [1.20] N. Hamada, S.I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992). [1.21] A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, Science 269, 1550 (1995). [1.22] W.A. Heer, A. Chatelain, D. Ugarte, Science 270, 1179 (1995). [1.23] P.G. Collins, A. Zettl, Appl. Phys. Lett. 69, 1969 (1996). [1.24] Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Appl. Phys. Lett. 70, 3308 (1997). [1.25] J.-M. Bonard, J.-P. Salvetat, T. Stockli, W.A. de Heer, L. Forro, A. Chatelain, Appl. Phys. Lett. 73, 918 (1998). [1.26] S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512 (1999). [1.27] Saito R.,Fujita M.,Dresselhaus G. and Dresselhaus.S., Appl. Phys. Lett. 68,1579 (1992). [1.28] Saito, R., Dresselhaus, G, and Dresselhaus, M S, Physical properties of carbon nanotubes. Imperial college press London, (1998). [1.29] Bonard, J.M., Salvetat, J P, Stockli, T, Forro, L, and Chatelain, A, Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Applied-Physics-A (Materials Science Processing) (Germany), A69, 245, (1999). [1.30] Gao, R., Pan, Z, and Wang, Z L, Work function at the tips of multiwalled carbon nanotubes. Appl. Phys. Lett. 78, 1757, (2001). [1.31] Groening, O., Kuettel, O M, Emmenegger, C, Groening, P, and Schlapbach, L, Field emission properties of carbon nanotubes. Journal-of-Vacuum-Science-Technology-B, 18, 665, (2000) [1.32] Fransen, M.J., van Rooy, T L, and Kruit, P, Field emission energy distributions from individual multiwalled carbon nanotubes. Applied-Surface-Science (Netherlands), 146, 312, (1999). [2.1] R. A. Stradling and P. C. Klipstein, in Growth and Characterisation of Semiconductors (Hilger, 1990). [2.2] Department of Physics National Taiwan University, Optical and Electrical Properties of Type-II GaAsSb/GaAs Multiple Quantum Wells, Tzung Te Chen. [2.3] Department of Institute of Optoelectronic Sciences College of Science National Taiwan Ocean University, Optical properties of II-VI compound semiconductor quantum structures, T. U. Lu. [2.4] B. Monemar, Phys. Rev. B 8, 1051 (1973). [2.5] T. Akasaka, S. Ando, T. Nishida, H. Saito, and N. Kobayashi, Appl. Phys. Lett. 79, 1414 (2001). [2.6] Timothy H. Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces”, Ó John Wiley & Sons Ltd, Chichester, 2000, pp. 9209–9231. [2.7] Lee, Zhen-Sheng, “Optical Properties of InGaN/GaN Multi-Quantum Wells Structure Grown by Metalorganic Chemical Vapor Deposition”, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Master Thesis (2007). [2.8] Huang, Yi-Zhe, “Optical Measurements and Analyses of InGaN/GaN on ZnO and Field Emission Studies of Carbon Nanotubes”, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Master Thesis (2008). [2.9] Kuo, Ting-Wei, “Optical Properties and Material Studies of Different InGaN/GaN Multi-Quantum Well Structures Light Emitting Diode Wafer”, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Master Thesis (2008). [2.10] Vitalij K. Pecharsky, and Peter Y. Zavalij “Fundamental of Powder diffraction and structural characterization of materials”, Springer (2005). [2.11] 洪上宇 “Measurement and Analysis of InGaN and InGaAlP High Brightness Light-Emitting Diodes”, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Master Thesis (2007). [2.12] PCI-Board for Time-Correlated Single Photon Counting:User’s Manual and Technical Data. [2.13] Department of Physics National Taiwan University, Studies of Optical Properties of II-VI Core-shell Quantum Dots, C. H. Wang. [3.1] G. Wetzel, T. Takeuchi, S. Yamagachi, H. Katoh, H. Amano, and I.Akasaki, Appl. Phys. Lett. 73, 1994 (1998). [3.2] L. Bellaiche, T. Mattila, L.-W. Wang, S.-H. Wei, and A. Zunger, Appl. Phys. Lett. 74, 1842 (1999). [3.3] M. J. Jeng, T. W. Su, Y. L. Lee, Y. H. Chang, L. B. Chang, R. M. Lin, J. H. Jiang, and Y. C. Lu, Jpn. J. Appl. Phys. 49, 052302 (2010). [3.4] P. C. Tsai, Y. K. Su, W.R. Chen, and C.Y. Huang, Jpn. J. Appl. Phys. 49, 04DG07 (2010). [3.5] D. Bimberg, M. Sondergeld, and E. Grobe, Phys. Rev. B, 4, 3451 (1971). [3.6] R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, Appl. Phys. Lett. 70, 1089 (1997). [3.7] M. E. White, K. P. O’Donnell, R. W. Martin, S. Pereira, C. J. Deatcher, and I. M. Watson, Mater. Sci. Eng. B 93, 147 (2002). [3.8] Cheng-Yen Chen, Dong-Ming Yeh, Yen-Cheng Lu, and C. C. Yang, Appl. Phys. Lett. 89, 203113 (2006). [3.9] Tetsuya Akasaka,a_ Hideki Gotoh, Yasuyuki Kobayashi, Hidetoshi Nakano, and Toshiki Makimoto, Appl. Phys. Lett. 89, 101110 (2006). [3.10] T. Onuma, S. Keller, S. P. DenBaars, J. S. Speck, S. Nakamura, and U. K. Mishra, T. Sota, S. F. Chichibua, Appl. Phys. Lett. 88, 111912 (2006). [3.11] Seiji Nagahara,a_ Munetaka Arita, and Yasuhiko Arakawa, Appl. Phys. Lett. 88, 083101 (2006). [3.12] P. M. Platzman, P. A. Wolf, ‘Waves and interactions in solid state plasmas’, Academic Press, New York, (1973). [3.13] V. Yu. Davydov, Yu. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, R. A. Evarestov, Phys. Rev. B 58, 12899 (1998). [3.14] R. Trommer, A. K. Ramds, in ‘Physics of Semiconductors 1978’, ed. B. L. H. Wilson, Ins. Phys. London, London (1979). [3.15] C. F. Klingshirn, ‘Semiconductor Optics’, Springer, Berlin (1997). [3.16] V. Yu. Davydov, Yu. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, R. A. Evarestov, Phys. Rev. B 58, 12899 (1998). [4.1] G. Wetzel, T. Takeuchi, S. Yamagachi, H. Katoh, H. Amano, and I.Akasaki, Appl. Phys. Lett. 73, 1994 (1998). [4.2] L. Bellaiche, T. Mattila, L.-W. Wang, S.-H. Wei, and A. Zunger, Appl. Phys. Lett. 74, 1842 (1999). [4.3] W. W. Lin, Y. K. Kuo, J. Lin, and M. H. Lee, Jpn. J .Appl. Phys. Vol. 40 pp. 3157-3158 Part1, No. 5A, (2001) [4.4] L.H. Zhou, Q.H. Zheng, and B.L. Liu, Semicon. Sci. Technol 24, 125003 (2009). [4.5] H. Masui, T. Melo, J. Sonoda, C. Weisbuch, S. Nakamura, and S. P. Denbaars, J. of Electron. Mater. 39, 15 (2010). [4.6] R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, Appl. Phys. Lett. 70, 1089 (1997). [4.7] H. Harima, J.Phys.: Condensed Matter 14, 967 (2002). [4.8] W. Feng, V. V. Kuryatkov, S. A. Nikishin, and M. Holtz, J.Cryst.Growth 312, 1717 (2010). [4.9] M. Funato, Y. Kawaguchi, S. Fujita, Mater. Res. Soc. Symp. Proc. 798, 347 (2003). [4.10] M. E. White, K. P. O’Donnell, R. W. Martin, S. Pereira, C. J. Deatcher, Sci. Eng. B 93, 147 (2002). [4.11] C. Gourdon and P. Lavallard, Phys. Status Solidi B 153, 641 (1989). [4.12] Cheng-Yen Chen, Dong-Ming Yeh, Yen-Cheng Lu, and C. C. Yang, Appl. Phys. Lett. 89, 203113 (2006). [4.13] Tetsuya Akasaka,a_ Hideki Gotoh, Yasuyuki Kobayashi, Hidetoshi Nakano, Appl. Phys. Lett. 89, 101110 (2006). [4.14] T. Onuma, S. Keller, S. P. DenBaars, J. S. Speck, S. Nakamura, and U. K. Mishra, T. Sota, S. F. Chichibua, Appl. Phys. Lett. 88, 111912 (2006). [4.15] Seiji Nagahara,a_ Munetaka Arita, and Yasuhiko Arakawa, Appl. Phys. Lett. 88, 083101 (2006). [5.1] P. Chen, X. Wu, J. Lin and K. L. Tan, J. Phys. Chem. B 103, 4559 (1999). [5.2] Zhe Chuan Feng, Weijie Lu, Bin Xue, Ping Chen, and Jianyi Lin, 6th IEEE Conference on Nanotechnology (2006). [5.3] H. J. Wassermann and J. S. Vermaak, Surf. Sci. 32, 168 (1972). [5.4] S. Gohil and S. Ghosh, Appl. Phys. Lett. 96, 143108 (2010). [5.5] S. Lee, J. W. Peng, and C. H. Liu, Carbon 46, 2124 (2008). [5.6] A. W. Musumeci, E. R. Waclawik, and R. L. Frost, Spectrochimica Acta Part A 71, 140 (2008). [5.7] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A.Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Science 275, 187 (1997). [5.8] X. Zhao, Y. Ando, L.-C. Qin, H. Kataura, Y. Maniwa and R. Saito, Appl. Phys. Lett. 81, 2550 (2002). [5.9] L. Ci, Z. Zhou, L. Song, X. Yan, D. Liu, H. Yuan and Y. Gao, Appl. Phys. Lett. 82, 3098 (2003). [5.10] Z. M. Li, Z. K. Tang, G. S. Siu and I. Bozovic, Appl. Phys. Lett. 84, 4101 (2004). [5.11] S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, and M. Tachibana, P. Molina-Morales and H. Nakai, J. Appl. Phys. 97, 104320 (2005). [5.12] Z. N. Utegulov, D. B. Mast, P. He, D. Shi and R. F. Gilland, J. Appl. Phys. 97, 104324 (2005). [5.13] F. Tuinstra and J. A. Solin, J. Chem. Phys. 53, 1126 (1970). [5.14] J. Kastner, T. Pichler, H. Kuzmany, S. Curran, W. Blau, D.N. Weldon, M. Delamesiere, S. Draper, and H. Zandbergen, Chem. Phys. Lett. 221, 53 (1994). [5.15] D. Kang, M. Hakamatsuka, K. Kojima, and M. Tachibana, Diamond & Related Materials 19, 578 (2010). [5.16] K. E. Hurst, A. C. Dillon, S. Yang, and J. H. Lehman, J. Phys. Chem. C 112, 16296 (2008). [5.17] C. Casiraghi, A. C. Ferrari, and J. Robertson, Phys. Rev. B 72, 085401 (2005). [5.18] K. Ramadurai, C. L. Cromer, A. C. Dillon, R. L. Mahajan, and J. H. Lehman, J. Appl. Phys. 105, 093106 (2009). [5.19] K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, Nano Lett. 8, 36 (2008). [5.20] Y. Ouyang, L. M. Cong, L. Chen, Q. X. Liu, and Y. Fang, Physica E 40, 2386 (2008). [5.21] A. Kumar, F. Singh, P. M. Koinkar, D. K. Avasthi, J. C. Pivin, M. A. More, Thin Solid Films 517, 4322 (2009). [5.22] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterline, Numerical Recipes in C, Cambridge University Press, New York, 1988. [5.23] Ando Y, Zhao X, Shimoyama H, Carbon, 39, 569 (2001). [5.24] M Shao, Q Li, J Wu, B Xie, S Zhang, Y Qian, Carbon, 40, 2961 (2002). [5.25] W Li, H Zhang, C Wang, Y Zhang, L Xu, K Zhu, Appl Phys Lett.70, 2684 (1997). [5.26] Zhe Chuan Feng, Yi Zhe Huang, Jyh Hua Ting, and Weijie Lu, Proc. of SPIE 7037, 70370R (2008). [5.27] S. J. Kyung, J. B. Park, J. H. Lee, and G. Y. Yeom, J. Appl. Phys. 100, 124303 (2006). [5.28] S. C. Ray, J. W. Chiou, W. F. Pong, and M.H. Tsai, Critical Reviews in Solid State and Materials Sciences, 31, 91 (2006). [5.29] Y. H. Tang, T. K. Sham, Y. F. Hu, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 366, 636 (2002). [5.30] J. St¨ohr, NEXAFS Spectroscopy, Springer-Verlag, Berlin, 1992. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46003 | - |
| dc.description.abstract | This thesis mainly divides into two parts: the first part is analyzed the optical properties of InGaN/GaN multi-quantum wells LED structure. The Raman scattering, photoluminescence (PL), photoluminescence excitation (PLE), time-resolved photoluminescence (TRPL) experiments were carried out to study the optical properties; the second part is the studies on carbon nanotubes (CNTs) by Raman spectroscopy.
First, we compared the optical properties with different well widths and different growth time of epitaxial lateral overgrowth GaN layer for an InGaN/GaN quantum well structure. The research reports mentioned in Chapter 3 will give us the information about different well widths effects. From the Photoluminescence, photoluminescence excitation and time-resolved photoluminescence experiments, we can find that the luminescence efficiency is higher and the carrier lifetime is longer for the sample with wider well width. Furthermore, the measurement results of different growth time of epitaxial lateral overgrowth GaN layer for an InGaN/GaN quantum well structure will be discussed in Chapter 4. We can observe that a larger Stokes shift results from longer growth time of epitaxial lateral overgrowth GaN with (112‾2) facets. The experimental results shown here can serve as important clue for the enhancement of the luminescence efficiency in the future optoelectronic devices. Second, we attend to investigate the Raman scattering spectroscopy and fittings on carbon nanotube (CNT) samples. In Section 5.1 we analyzed the Raman spectroscopy about Cu nanoparticles and microfibers prepared by solid state reaction using carbon nanotube as template. Then we discussed the relation between Raman signals and field emission properties of pure CNT arrays with different growth conditions in Section 5.2. Besides, there were some electron microscope, X-ray diffraction, and X-ray absorption measurements of CNT samples. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:51:01Z (GMT). No. of bitstreams: 1 ntu-99-R93941010-1.pdf: 2439450 bytes, checksum: 040c4a680c698bfa3e0755a6bed7e117 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書........................................................................................I
致謝..............................................................................................................II 摘要.............................................................................................................III Abstract.......................................................................................................IV Content........................................................................................................VI Lists of Figures.............................................................................................X Lists of Tables.......................................................................................XVIII Chapter 1 Introduction…………………………………………………...1 1.1 Introduction to III-N Materials……………………………............1 1.1.1 Applications of III-N Materials Based on Heterostrctures..1 1.1.2 Review of Group-III-N Materials Growth………………...2 1.1.2.1 Lattice Structure of the Nitride Semiconductors…….2 1.1.2.2 Substrates for Nitride Compound……………………5 1.2 Nature and applications of carbon nanotubes (CNTs)………….....6 1.2.1 Motivation……………………………………………...…6 1.2.2 Overview of Carbon Nanotubes…………………………..7 1.3 Our Research Topics…………………………………………….10 References……………………………………………………………13 Chapter 2 Experimental Details...............................................................17 2.1 Photoluminescence (PL)……………………………………..….17 2.1.1 PL Experimental Setup……………………………….......24 2.2 Photoluminescence excitation (PLE)………………………....….25 2.2.1 Photoluminescence Excitation Experimental setup………26 2.3 Raman scattering………………………………………………...28 2.4 Time-Resolved Photoluminescence: (TRPL)…………………....34 2.4.1 Time-Resolved Photoluminescence principium……….…34 2.4.2 TRPL Experimental Setup…………………………..……38 References………………………………………………………...…40 Chapter 3 InGaN/GaN Multi-quantum Wells Structures LASER Diode with Different Well Widths ……………………..………………………42 3.1 Sample Growth……………………………………………..........42 3.2 Optical Measurement and analysis…………………………....…44 3.2.1 PL Experimental Results………………………….………44 3.2.2 Photoluminescence Excitation Experimental Results….…54 3.2.3 TRPL Experimental Results………………………………56 3.2.4 Micro-Raman Experimental Results……………………...65 3.3 Conclusions........................................................................….…..71 References……………………………………………………...……72 Chapter 4 Optical and Structural Properties of InGaN Multiple Quantum Well Structures Grown on (112‾2) Facet GaN/sapphire Templates…………………………….…………………………………..74 4.1 Sample Information…….…………………………………..........74 4.2 Optical Measurement and analysis…………………………....…75 4.2.1 PL Experimental Results………………………….………75 4.2.2 Micro-PL and Micro-Raman Experimental Results….…..88 4.2.3 PLE Experimental Results….…………………………….92 4.2.4 TRPL Experimental Results…………………….………...94 4.3 Conclusions........................................................................….…102 References……………………………………………………...…..104 Chapter 5 Some Studies on Carbon Nanotubes (CNTs)……….….....106 5.1 Raman and Structural Studies of Copper Nanoparticle and Microfiber Produced by Using Carbon Nanotube as Templates……………………………………………………….106 5.1.1 Experiment…………………….………………………...106 5.1.2 Results…………...………………………………...…….107 5.1.2.1 X-ray diffraction measurement……………………107 5.1.2.2 Scanning electron microscopy image……………..108 5.1.2.3 Transmission electron microcopy image…………...109 5.1.2.4 Raman scattering……………………………………111 5.1.2.5 Further discussion…………………………………..118 5.1.3 Conclusions……………………………………………...121 5.2 Raman Spectroscopy and X-ray Absorption Spectroscopy of CNT Arrays…………………………………………………………..123 5.2.1 The sample information of CNT arrays……………..…..123 5.2.2 Raman spectroscopy of CNT arrays…………………….124 5.2.3 X-ray Absorption Spectroscopy of CNT arrays………...135 5.2.4 Conclusions……………………………………………..138 References………………………………………………..…………139 | |
| dc.language.iso | en | |
| dc.subject | 氮化銦鎵量子井結構發光二極體 | zh_TW |
| dc.subject | 拉曼光譜 | zh_TW |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | Raman Spectroscopy | en |
| dc.subject | InGaN MQW Light-Emitting Diodes | en |
| dc.subject | Carbon Nanotubes | en |
| dc.title | 氮化銦鎵量子井結構發光二極體之光學特性分析以及奈米碳管之拉曼光譜研究 | zh_TW |
| dc.title | Optical Analyses of InGaN MQW Light-Emitting Diodes and Raman Spectroscopy Studies on Carbon Nanotubes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳淮義,李粵堅 | |
| dc.subject.keyword | 氮化銦鎵量子井結構發光二極體,奈米碳管,拉曼光譜, | zh_TW |
| dc.subject.keyword | InGaN MQW Light-Emitting Diodes,Carbon Nanotubes,Raman Spectroscopy, | en |
| dc.relation.page | 141 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
