請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45982
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳丕燊(Pisin Chen) | |
dc.contributor.author | Wei-Ting Lin | en |
dc.contributor.author | 林韋廷 | zh_TW |
dc.date.accessioned | 2021-06-15T04:50:27Z | - |
dc.date.available | 2010-08-05 | |
dc.date.copyright | 2010-08-05 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-02 | |
dc.identifier.citation | [1] http://curiousbastard.wordpress.com/2009/11/07/whats-the-di®erence-
between-dark-matter-dark-energy/ [2] M. Kowalski et al. [Supernova Cosmology Project Collaboration], Improved Cosmological Constraints from New, Old and Combined Supernova Datasets,' Astrophys. J. 686, 749 (2008) [arXiv:astro-ph/0804.4142]. [3] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Measure- ments of Omega and Lambda from 42 High-Redshift Supernovae,' Astrophys. J. 517, 565 (1999) [arXiv:astro-ph/9812133]. [4] A. G. Riess et al. [Supernova Search Team Collaboration], Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,' Astron. J. 116, 1009 (1998) [arXiv:astro-ph/9805201]. [5] D. Huterer and M. S. Turner, Prospects for probing the dark energy via super- nova distance measurements,' Phys. Rev. D 60, 081301 (1999) [arXiv:astro- ph/9808133]. [6] D. N. Spergel et al. [WMAP Collaboration], Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology,' Astrophys. J. Suppl. 170, 377 (2007) [arXiv:astro-ph/0603449]. [7] E. Komatsu et al. [WMAP Collaboration], Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:Cosmological Interpretation,' As- trophys. J. Suppl. 180, 330 (2009) [arXiv:astro-ph/0803.0547]. [8] D. J. Eisenstein et al. [SDSS Collaboration], Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galax- ies,' Astrophys. J. 633, 560 (2005) [arXiv:astro-ph/0501171]. [9] J. Frieman, M. Turner and D. Huterer, Dark Energy and the Accelerat- ing Universe,' Ann. Rev. Astron. Astrophys. 46, 385 (2008) [arXiv:astro- ph/0803.0982]. [10] E. J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy,' Int. J. Mod. Phys. D 15, 1753 (2006) [arXiv:hep-th/0603057]. [11] S. Weinberg, The cosmological constant problem,' Rev. Mod. Phys. 61, 1 (1989). [12] S. Weinberg, The cosmological constant problems,' [arXiv:astro- ph/0005265]. [13] S. M. Carroll, The cosmological constant,' Living Rev. Rel. 4, 1 (2001) [arXiv:astro-ph/0004075]. [14] C. Armendariz-Picon, V. F. Mukhanov and P. J. Steinhardt, A dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration,' Phys. Rev. Lett. 85, 4438 (2000) [arXiv:astro-ph/0004134]. [15] R. R. Caldwell, R. Dave and P. J. Steinhardt, Cosmological Imprint of an Energy Component with General Equation-of-State,' Phys. Rev. Lett. 80, 1582 (1998) [arXiv:astro-ph/9708069]. [16] S. M. Carroll, Dark Energy and the Preposterous Universe,' [arXiv:astro- ph/0107571.] [17] T. P. Sotiriou and V. Faraoni, f(R) Theories Of Gravity,' [arXiv:gr- qc/0805.1726]. [18] R. Maartens, Brane-world gravity,' Living Rev. Rel. 7, 7 (2004) [arXiv:gr- qc/0312059]. [19] G. R. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space,' Phys. Lett. B 485, 208 (2000) [arXiv:hep-th/0005016]. [20] J. D. Bekenstein, Relativistic gravitation theory for the MOND paradigm,' Phys. Rev. D 70, 083509 (2004) [Erratum-ibid. D 71, 069901 (2005)] [arXiv:astro-ph/0403694]. [21] T. Jacobson and D. Mattingly, Gravity with a dynamical preferred frame,' Phys. Rev. D 64, 024028 (2001) [arXiv:gr-qc/0007031]. [22] S. Nojiri and S. D. Odintsov, Introduction to modi‾ed gravity and gravita- tional alternative for dark energy,' eConf C0602061, 06 (2006) [Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007)] [arXiv:hep-th/0601213]. [23] A. A. Starobinsky, A new type of isotropic cosmological models without sin- gularity,' Phys. Lett. B 91, 99 (1980). [24] S. Capozziello, S. Carloni and A. Troisi, Quintessence without scalar ‾elds,' Recent Res. Dev. Astron. Astrophys. 1, 625 (2003) [arXiv:astro-ph/0303041]. [25] S. M. Carroll, V. Duvvuri, M. Trodden and M. S. Turner, Is Cosmic Speed- Up Due to New Gravitational Physics?,' Phys. Rev. D 70, 043528 (2004) [arXiv:astro-ph/0306438]. [26] T. Chiba, 1/R gravity and scalar-tensor gravity,' Phys. Lett. B 575, 1 (2003) [arXiv:astro-ph/0307338]. [27] J. Khoury and A. Weltman, Chameleon Cosmology,' Phys. Rev. D 69, 044026 (2004) [arXiv:astro-ph/0309411]. [28] J. Khoury and A. Weltman, Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space,' Phys. Rev. Lett. 93, 171104 (2004) [arXiv:astro- ph/0309300]. [29] A. De Felice and S. Tsujikawa, f(R) theories,' [arXiv:gr-qc/1002.4928]. [30] S. Capozziello, V. F. Cardone and A. Troisi, Reconciling dark energy models with f(R) theories,' Phys. Rev. D 71, 043503 (2005) [arXiv:astro- ph/0501426]. [31] A. de la Cruz-Dombriz and A. Dobado, A f(R) gravity without cosmological constant,' Phys. Rev. D 74, 087501 (2006) [arXiv:gr-qc/0607118]. [32] T. Multamaki and I. Vilja, Cosmological expansion and the uniqueness of gravitational action,' Phys. Rev. D 73, 024018 (2006) [arXiv:astro- ph/0506692]. [33] S. Nojiri and S. D. Odintsov, Modi‾ed f(R) gravity consistent with realistic cosmology: From matter dominated epoch to dark energy universe,' Phys. Rev. D 74, 086005 (2006) [arXiv:hep-th/0608008]. [34] L. Pogosian and A. Silvestri, The pattern of growth in viable f(R) cosmolo- gies,' Phys. Rev. D 77, 023503 (2008) [Erratum-ibid. D 81, 049901 (2010)] [arXiv:astro-ph/0709.0296]. [35] V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Theory of cosmo- logical perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions,' Phys. Rept. 215, 203 (1992). [36] C. P. Ma and E. Bertschinger, Cosmological perturbation theory in the syn- chronous and conformal Newtonian gauges,' Astrophys. J. 455, 7 (1995) [arXiv:astro-ph/9506072]. [37] S. Dodelson, Modern Cosmology,' Academic press (2003) [38] S. Weinberg, Cosmology,' Oxford University press (2008) [39] B. F. Schutz, A First Course In General Relativity,' Cambridge University press (1985) [40] R. K. Pathria, Statictical Mechanics, Second Edition,' Elsevier (Singapore) Pte Ltd. press (2006) [41] E. Komatsu et al. [WMAP Collaboration], Five-Year Wilkinson Microwave Anisotropy Probe (WMAP1) Observations:Cosmological Interpretation,' As- trophys. J. Suppl. 180, 330 (2009) [arXiv:astro-ph/0803.0547]. [42] E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,' [arXiv:astro- ph/1001.4538]. [43] Y. Gong, R. G. Cai, Y. Chen and Z. H. Zhu, Observational constraint on dynamical evolution of dark energy,' JCAP 1001, 019 (2010) [arXiv:astro- ph/0909.0596]. [44] T. Giannantonio, M. Martinelli, A. Silvestri and A. Melchiorri, New con- straints on parametrised modi‾ed gravity from correlations of the CMB with large scale structure,' JCAP 1004, 030 (2010) [arXiv:astro-ph/0909.2045]. [45] P. Serra, A. Cooray, S. F. Daniel, R. Caldwell and A. Melchiorri, Lensed Cosmic Microwave Background Constraints on Post-General Relativity Pa- rameters,' Phys. Rev. D 79, 101301 (2009) [arXiv:astro-ph/0901.0917]. [46] S. F. Daniel et al., A Multi-Parameter Investigation of Gravitational Slip,' Phys. Rev. D 80, 023532 (2009) [arXiv:astro-ph/0901.0919]. [47] R. Bean, A weak lensing detection of a deviation from General Relativity on cosmic scales,' [arXiv:astro-ph/0909.3853]. [48] S. F. Daniel, E. V. Linder, T. L. Smith, R. R. Caldwell, A. Cooray, A. Leau- thaud and L. Lombriser, Testing General Relativity with Current Cosmolog- ical Data,' Phys. Rev. D 81, 123508 (2010) [arXiv:astro-ph/1002.1962]. [49] R. Bean and M. Tangmatitham, Current constraints on the cosmic growth history,' Phys. Rev. D 81, 083534 (2010) [arXiv:astro-ph/1002.4197]. [50] J. Guzik, B. Jain and M. Takada, Tests of Gravity from Imaging and Spectro- scopic Surveys,' Phys. Rev. D 81, 023503 (2010) [arXiv:astro-ph/0906.2221]. [51] Je-An Gu and Wei-Ting Lin in preparation (2010) [52] S. Capozziello and S. Tsujikawa, Solar system and equivalence principle con- straints on f(R) gravity by chameleon approach,' Phys. Rev. D 77, 107501 (2008) [arXiv:gr-qc/0712.2268]. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45982 | - |
dc.description.abstract | 我們利用宇宙學以及局部尺度的實驗去制約f(R) 設計者模型(designer f(R) models)。對於宇宙學尺度的制約,我們發現,儘管可以產生任何期望的宇宙膨脹,然而為了要符合大尺度結構實驗的制約,f(R)設計者遭受到微調問題 (fine-tuning problem)。對於局部重力的制約,目前為止,我們找到了通過局部重力測試的f(R)設計者模型;但是對於這些模型,甚至考慮宇宙學以及局部尺度也無法將它們從宇宙常數模型(ΛCDM model)分辨出來。對於其它在這篇碩士論文所考慮的有效狀態方程,我們未找到可通過局部重力測試的f(R)設計者模型。 | zh_TW |
dc.description.abstract | In this thesis we constrain the designer f(R) models by the observations in both cosmological and local scales. For the cosmological observation constraints, we find that although the designer f(R) can generate any desired cosmic expansion his-tory, it suffers from the fine-tuning problem in order to fit the large scale structure constraints well. For local gravity constraints, so far we do search out the viable designer f(R) models that can satisfy the local gravity constraints but would be indistinguishable from the ΛCDM model even considering the observations in both cosmological and local scales and for other effective equation of states we consider in this thesis, we do not find out any viable designer f(R) model. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:50:27Z (GMT). No. of bitstreams: 1 ntu-99-R97222021-1.pdf: 1989171 bytes, checksum: a1c9eacfac550034d07283e22ce2a3e3 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 1 Introduction 11
2 Background Evolution in the f(R) Theory 17 2.1 Field Equations in the f(R) Theory . . . . . . . . . . . . . . . . . . . 17 2.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Designer f(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Cosmological Perturbation in the f(R) Theory 37 3.1 Perturbed Field Equation . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 The Boltzmann Equations . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 An Issue to Be Solved . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.4 Late-Time and Subhorizon Approximation . . . . . . . . . . . . . . . 77 4 Results 81 4.1 Designer f(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2 Large Scale Structure Constraints . . . . . . . . . . . . . . . . . . . . 86 4.2.1 Ψ/ Φ . . . . . . . . . . . . . . . . . . . . . . . 89 4.2.2 Geff/GN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3 Local Gravity Constraints . . . . . . . . . . . . . . . . . . . . . . . . 112 5 Summary and Discussion 117 Bibliography 120 Appendix A 127 A.1 Some curved spacetime quantities and derivation for useful formulae . 127 A.1.1 Curved spacetime quantities . . . . . . . . . . . . . . . . . . . 127 A.1.2 Derivation for useful formulae . . . . . . . . . . . . . . . . . . 128 Appendix B 133 B.1 Our Conventions and Some useful Formulae . . . . . . . . . . . . . . 133 | |
dc.language.iso | en | |
dc.title | 宇宙觀測對f(R)重力理論的制約 | zh_TW |
dc.title | Observational Constraints on the f(R) Theory of Modified Gravity | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 顧哲安(Je-An Gu),杜蕙慈(Huitzu Tu),李沃龍(Wo-Lung Lee),劉國欽(Guo-Chin Liu) | |
dc.subject.keyword | 修正重力理論,f(R)重力理論,f(R)設計者,大尺度結構實驗制約,局部重力測試, | zh_TW |
dc.subject.keyword | modified gravity,f(R) theory,designer f(R),large scale structure constraints,local gravity constraints, | en |
dc.relation.page | 134 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-02 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。