Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45979
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁博煌(Po-Huang Liang)
dc.contributor.authorYa-Fei Leeen
dc.contributor.author李亞菲zh_TW
dc.date.accessioned2021-06-15T04:50:22Z-
dc.date.available2010-08-13
dc.date.copyright2010-08-13
dc.date.issued2010
dc.date.submitted2010-08-01
dc.identifier.citationReference
Acehan, D., Jiang, X., Morgan, D.G., Heuser, J.E., Wang, X., and Akey, C.W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9, 423-432.
Adams, J.M., and Cory, S. (2002). Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 14, 715-720.
Aihara, Y., Inoue, T., Tashiro, T., Okamoto, K., Komiya, Y., and Mikoshiba, K. (2001). Movement of endoplasmic reticulum in the living axon is distinct from other membranous vesicles in its rate, form, and sensitivity to microtubule inhibitors. J Neurosci Res 65, 236-246.
Ashkenazi, A. (2002). Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2, 420-430.
Barnhart, B.C., Alappat, E.C., and Peter, M.E. (2003). The CD95 type I/type II model. Semin Immunol 15, 185-193.
Bhattacharyya, B., Panda, D., Gupta, S., and Banerjee, M. (2008). Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev 28, 155-183.
Boatright, K.M., and Salvesen, G.S. (2003). Mechanisms of caspase activation. Curr Opin Cell Biol 15, 725-731.
Boyce, M., and Yuan, J. (2006). Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13, 363-373.
Brackley, K.I., and Grantham, J. (2009). Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation. Cell Stress Chaperones 14, 23-31.
Braun, R.J., and Zischka, H. (2008). Mechanisms of Cdc48/VCP-mediated cell death: from yeast apoptosis to human disease. Biochim Biophys Acta 1783, 1418-1435.
Chen-Levy, Z., and Cleary, M.L. (1990). Membrane topology of the Bcl-2 proto-oncogenic protein demonstrated in vitro. J Biol Chem 265, 4929-4933.
Chen, G., Cao, P., and Goeddel, D.V. (2002). TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9, 401-410.
Criddle, A.H., Geeves, M.A., and Jeffries, T. (1985). The use of actin labelled with N-(1-pyrenyl)iodoacetamide to study the interaction of actin with myosin subfragments and troponin/tropomyosin. Biochem J 232, 343-349.
Eletto, D., Dersh, D., and Argon, Y. (2010). GRP94 in ER quality control and stress responses. Semin Cell Dev Biol 21, 479-485.
Garcia-Calvo, M., Peterson, E.P., Leiting, B., Ruel, R., Nicholson, D.W., and Thornberry, N.A. (1998). Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273, 32608-32613.
Gewies, A. (2003). Introduction to apoptosis. ApoReview 26.
Gigant, B., Wang, C., Ravelli, R.B., Roussi, F., Steinmetz, M.O., Curmi, P.A., Sobel, A., and Knossow, M. (2005). Structural basis for the regulation of tubulin by vinblastine. Nature 435, 519-522.
Gimenez Ortiz, A., and Montalar Salcedo, J. (2010). Heat shock proteins as targets in oncology. Clin Transl Oncol 12, 166-173.
Giustiniani, J., Daire, V., Cantaloube, I., Durand, G., Pous, C., Perdiz, D., and Baillet, A. (2009). Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53. Cell Signal 21, 529-539.
Grazi, E. (1985). Polymerization of N-(1-pyrenyl) iodoacetamide-labelled actin: the fluorescence signal is not directly proportional to the incorporation of the monomer into the polymer. Biochem Biophys Res Commun 128, 1058-1063.
Hajnoczky, G., Davies, E., and Madesh, M. (2003). Calcium signaling and apoptosis. Biochem Biophys Res Commun 304, 445-454.
Hari, M., Wang, Y., Veeraraghavan, S., and Cabral, F. (2003). Mutations in alpha- and beta-tubulin that stabilize microtubules and confer resistance to colcemid and vinblastine. Mol Cancer Ther 2, 597-605.
Haynes, C.M., Titus, E.A., and Cooper, A.A. (2004). Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 15, 767-776.
Hitomi, J., Katayama, T., Eguchi, Y., Kudo, T., Taniguchi, M., Koyama, Y., Manabe, T., Yamagishi, S., Bando, Y., Imaizumi, K., et al. (2004). Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165, 347-356.
Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R.D., and Korsmeyer, S.J. (1990). Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334-336.
Jarosch, E., Taxis, C., Volkwein, C., Bordallo, J., Finley, D., Wolf, D.H., and Sommer, T. (2002). Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4, 134-139.
Jiang, J.D., Denner, L., Ling, Y.H., Li, J.N., Davis, A., Wang, Y., Li, Y., Roboz, J., Wang, L.G., Perez-Soler, R., et al. (2002). Double blockade of cell cycle at g(1)-s transition and m phase by 3-iodoacetamido benzoyl ethyl ester, a new type of tubulin ligand. Cancer Res 62, 6080-6088.
Jimbo, A., Fujita, E., Kouroku, Y., Ohnishi, J., Inohara, N., Kuida, K., Sakamaki, K., Yonehara, S., and Momoi, T. (2003). ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation. Exp Cell Res 283, 156-166.
Juo, P., Kuo, C.J., Yuan, J., and Blenis, J. (1998). Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol 8, 1001-1008.
Kischkel, F.C., Lawrence, D.A., Tinel, A., LeBlanc, H., Virmani, A., Schow, P., Gazdar, A., Blenis, J., Arnott, D., and Ashkenazi, A. (2001). Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 276, 46639-46646.
Krause, T., Gerbershagen, M.U., Fiege, M., Weißhorn, R., and Wappler, F. (2004). Dantrolene – A review of its pharmacology, therapeutic use and new developments. Anaesthesia 59, 364-373.
Lamb, J.R., Fu, V., Wirtz, E., and Bangs, J.D. (2001). Functional analysis of the trypanosomal AAA protein TbVCP with trans-dominant ATP hydrolysis mutants. J Biol Chem 276, 21512-21520.
Lamkanfi, M., Declercq, W., Kalai, M., Saelens, X., and Vandenabeele, P. (2002). Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9, 358-361.
Lanneau, D., de Thonel, A., Maurel, S., Didelot, C., and Garrido, C. (2007). Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 1, 53-60.
Lee, K.M., Cao, D., Itami, A., Pour, P.M., Hruban, R.H., Maitra, A., and Ouellette, M.M. (2007). Class III beta-tubulin, a marker of resistance to paclitaxel, is overexpressed in pancreatic ductal adenocarcinoma and intraepithelial neoplasia. Histopathology 51, 539-546.
Lewis, J., Devin, A., Miller, A., Lin, Y., Rodriguez, Y., Neckers, L., and Liu, Z.G. (2000). Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem 275, 10519-10526.
Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.
Lin, Y.F., Tsai, W.P., Liu, H.G., and Liang, P.H. (2009). Intracellular beta-tubulin/chaperonin containing TCP1-beta complex serves as a novel chemotherapeutic target against drug-resistant tumors. Cancer Res 69, 6879-6888.
Ling, X., Cheng, Q., Black, J.D., and Li, F. (2007). Forced expression of survivin-2B abrogates mitotic cells and induces mitochondria-dependent apoptosis by blockade of tubulin polymerization and modulation of Bcl-2, Bax, and survivin. J Biol Chem 282, 27204-27214.
Llorca, O., Martin-Benito, J., Gomez-Puertas, P., Ritco-Vonsovici, M., Willison, K.R., Carrascosa, J.L., and Valpuesta, J.M. (2001). Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. J Struct Biol 135, 205-218.
Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490.
McIlvain, J.M., Jr., Lamb, C., Dabora, S., and Sheetz, M.P. (1993). Microtubule motor-dependent formation of tubulovesicular networks from endoplasmic reticulum and Golgi membranes. Methods Cell Biol 39, 227-236.
Mitchison, T., and Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature 312, 237-242.
Mohamad, N., Gutierrez, A., Nunez, M., Cocca, C., Martin, G., Cricco, G., Medina, V., Rivera, E., and Bergoc, R. (2005). Mitochondrial apoptotic pathways. Biocell 29, 149-161.
Momoi, T. (2004). Caspases involved in ER stress-mediated cell death. Journal of Chemical Neuroanatomy 28, 101-105.
Montgomery, R.B., Guzman, J., O'Rourke, D.M., and Stahl, W.L. (2000). Expression of oncogenic epidermal growth factor receptor family kinases induces paclitaxel resistance and alters beta-tubulin isotype expression. J Biol Chem 275, 17358-17363.
Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A., and Yuan, J. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103.
Pandey, P., Saleh, A., Nakazawa, A., Kumar, S., Srinivasula, S.M., Kumar, V., Weichselbaum, R., Nalin, C., Alnemri, E.S., Kufe, D., et al. (2000). Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19, 4310-4322.
Prince, T., Shao, J., Matts, R.L., and Hartson, S.D. (2005). Evidence for chaperone heterocomplexes containing both Hsp90 and VCP. Biochem Biophys Res Commun 331, 1331-1337.
Roitelman, J., and Shechter, I. (1989). Studies on the catalytic site of rat liver HMG-CoA reductase: interaction with CoA-thioesters and inactivation by iodoacetamide. J Lipid Res 30, 97-107.
Schmitt, E., Gehrmann, M., Brunet, M., Multhoff, G., and Garrido, C. (2007). Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81, 15-27.
Sharma, J., and Luduena, R.F. (1994). Use of N,N'-polymethylenebis(iodoacetamide) derivatives as probes for the detection of conformational differences in tubulin isotypes. J Protein Chem 13, 165-176.
Sharp, D.J., Rogers, G.C., and Scholey, J.M. (2000). Microtubule motors in mitosis. Nature 407, 41-47.
Shirogane, T., Fukada, T., Muller, J.M., Shima, D.T., Hibi, M., and Hirano, T. (1999). Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 11, 709-719.
Smaili, S.S., Hsu, Y.T., Carvalho, A.C., Rosenstock, T.R., Sharpe, J.C., and Youle, R.J. (2003). Mitochondria, calcium and pro-apoptotic proteins as mediators in cell death signaling. Braz J Med Biol Res 36, 183-190.
Song, H.Y., Dunbar, J.D., Zhang, Y.X., Guo, D., and Donner, D.B. (1995). Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem 270, 3574-3581.
Sullivan, K.F. (1988). Structure and utilization of tubulin isotypes. Annu Rev Cell Biol 4, 687-716.
Uppuluri, S., Knipling, L., Sackett, D.L., and Wolff, J. (1993). Localization of the colchicine-binding site of tubulin. Proc Natl Acad Sci U S A 90, 11598-11602.
Urano, N., Fujiwara, Y., Doki, Y., Kim, S.J., Miyoshi, Y., Noguchi, S., Miyata, H., Takiguchi, S., Yasuda, T., Yano, M., et al. (2006). Clinical significance of class III beta-tubulin expression and its predictive value for resistance to docetaxel-based chemotherapy in gastric cancer. Int J Oncol 28, 375-381.
Vandermoere, F., El Yazidi-Belkoura, I., Slomianny, C., Demont, Y., Bidaux, G., Adriaenssens, E., Lemoine, J., and Hondermarck, H. (2006). The valosin-containing protein (VCP) is a target of Akt signaling required for cell survival. J Biol Chem 281, 14307-14313.
Varfolomeev, E.E., Schuchmann, M., Luria, V., Chiannilkulchai, N., Beckmann, J.S., Mett, I.L., Rebrikov, D., Brodianski, V.M., Kemper, O.C., Kollet, O., et al. (1998). Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267-276.
Vyas, D.M., and Kadow, J.F. (1995). Paclitaxel: a unique tubulin interacting anticancer agent. Prog Med Chem 32, 289-337.
Wang, J., Chun, H.J., Wong, W., Spencer, D.M., and Lenardo, M.J. (2001). Caspase-10 is an initiator caspase in death receptor signaling. Proc Natl Acad Sci U S A 98, 13884-13888.
Wawrzynow, A., Collins, J.H., and Coan, C. (1993). An iodoacetamide spin-label selectively labels a cysteine side chain in an occluded site on the sarcoplasmic reticulum Ca(2+)-ATPase. Biochemistry 32, 10803-10811.
Wu, Y., Kwon, K.S., and Rhee, S.G. (1998). Probing cellular protein targets of H2O2 with fluorescein-conjugated iodoacetamide and antibodies to fluorescein. FEBS Lett 440, 111-115.
Yin, S., Cabral, F., and Veeraraghavan, S. (2007). Amino acid substitutions at proline 220 of beta-tubulin confer resistance to paclitaxel and colcemid. Mol Cancer Ther 6, 2798-2806.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45979-
dc.description.abstract先前我們發現一個藉iodoacetyl基團和具碳端保護的色氨酸的氨端結合而成的iodoacetamide可造成HEK293細胞停至sub-G0 期及造成HEK293細胞凋亡 (Lin et al., 2009)。由於 Cys354位於β-tubulin和chaperonin containing TCP1 subunit β (CCT-β) 此兩蛋白的蛋白質複合體之結合部位,此化合物可藉其攜帶碘的碳原子和β-tubulin的Cys354的硫原子作共價性結合以破壞此複合體。另一方面,HEK293用此化合物處理也造成除了caspase-1之外所有caspases的活化。在本論文中,我首先藉對細胞處理I-Trp的濃度越高及時間越久,cytochrome c由粒線體釋放到細胞質的量也越多,這個發現同時也顯示了倚賴粒線體一系列反應的內源性細胞凋亡訊息傳遞之參與。另外,由於CCT-β在I-Trp所引發地細胞凋亡當中的重要性已被提出 (Lin et al., 2009),若將CCT-β進行knockdown可望降低细胞凋亡的程度。因此在由shRNA轉染的HEK293細胞中測得cytochrome c釋放到細胞質中的量的確減少,符合預期中β-tubulin / CCT-β 複合體對細胞生存的重要性。
有趣的是,藉由使用IETD-CHO去抑制caspase-8的活性,發現cytochrome c 釋放到細胞質的程度也趨緩;由於caspase-8與caspase-10都已被證明會在外源性細胞凋亡中活化 (Juo et al., 1998; Wang et al., 2001),而在某些情況下內源性和外源性細胞凋亡途徑會發生crosstalk的現象(Gewies, 2003),因此這個發現除了顯示β-tubulin / CCT-β 複合體被破壞將導致外源性細胞凋亡途徑的活化之外,也證明了在此情況下內源性與外源性的細胞凋亡訊息傳遞路徑之間彼此會有crosstalk的現象。
再者,當細胞受到I-Trp刺激引發細胞凋亡之際,藉由阻止內質網內鈣離子的釋放,發現到caspase-4及caspase-5的活性也會隨之明顯減低。由於鈣離子的釋放,以及caspase-4的活化,都和內質網中壓力累積所引起的細胞凋亡有所關聯 (Hitomi et al., 2004),這個結果代表內質網也在此β-tubulin/CCT-β複合體毀壞所引發的細胞凋亡機制中扮演了重要的調節角色。
接著,為了初步篩選和細胞凋亡的路徑相關的結合夥伴,使用重組的CCT-β蛋白來捕捉和CCT-β有結合的蛋白質,結果發現了Hsp90及VCP這兩種已知對調控細胞生存及死亡占有一席之地的蛋白質,並做進一步探討。
總括而論,本篇研究嘗試去釐清β-tubulin/CCT-β複合體毀壞所引發的細胞凋亡反應中的詳細分子機制,發現三種細胞凋亡途徑彼此之間的交互作用,嘗試去找出β-tubulin/CCT-β複合體下游其他重要的因子,並且為一個可針對tubulin-binding agent有抗性的,或者是CCT-β會過度表現的癌症種類有所療效的標靶治療作機制上的探討。
zh_TW
dc.description.abstractPreviously, we identified an iodoacetamide with iodoacetyl group attached to the N-terminal of C-terminal protected Trp residue to cause migration of HEK293 cells into sub-G0 phase and cell apoptosis (Lin et al., Cancer Res. 2009). This compound can form a covalent bond through its iodo-bearing carbon with the thiol atom of Cys354 of β-tubulin to disrupt the complex of β-tubulin and chaperonin containing TCP1 subunit β (CCT-β) since Cys354 is located at the interface of the two interacting proteins. Treatment of HEK293 cell with the compound triggered apoptosis by activation of all caspases except caspase-1. In this thesis, I first identified the release of cytochrome c from mitochondria to cytosol after the cells were treated with I-Trp, and the release level showed the time and dosage dependence, which indicated the involvement of mitochondria-dependent intrinsic apoptotic signaling. Since the importance of β-tubulin/CCT-β complex to cell survival has been described (Lin et al., 2009), knockdown of CCT-β may reduce the subsequent apoptotic reaction. Transient knockdown by shRNA had been performed in order to confirm this hypothesis, and the cytochrome c releasing was thus decreased to the expectation.
Interestingly, the leaking of cytochrome c into cytosol had also been prevented by inhibiting caspase-8 activity using IETD-CHO, a caspase-8 inhibitor. This proved the existence of extrinsic apoptotic signaling, as well as the crosstalk between intrinsic and extrinsic apoptotic pathway in this case, since caspase-8 and caspase-10 have been mentioned to be activated in extrinsic apoptotic pathway (Juo et al., 1998; Wang et al., 2001) and the crosstalk between intrinsic and extrinsic apoptotic pathway may happen under some kinds of circumstances (Gewies, 2003).
Moreover, the rise of caspase-4 and caspase-5 activities due to I-Trp treatment could be reversed by blocking the Ca2+ release from intracellular reservoir. Due to the fact that Ca2+ release is an upstream event of ER-stress induced apoptosis, and caspase-4 has been described as ER stress-specific caspases (Hitomi et al., 2004), the data implicated ER played as a mediator among the reaction launched by CCT-β and β-tubulin complex destruction, and the crosstalk included the ER-stress induced apoptosis as well here. Then His-tagged CCT-β was used to pull down and identify several possible binding partners of CCT-β. This lead to the discover of Hsp90 and VCP as candidate interaction proteins of CCT-β, which both of the two proteins have been noticed of their mediating role in cell survival and cell death.
Overall, these studies elucidated the possible mechanisms underlying the destruction of β-tubulin/CCT-β complex, found out the crosstalk between the several apoptotic pathway in this case, discovered the essential components in the downstream of β-tubulin/CCT-β complex and to suggest chemotherapeutic target for treating the clinical tubulin-binding agent-resistant or CCT-β–overexpressing tumors.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:50:22Z (GMT). No. of bitstreams: 1
ntu-99-R97b46011-1.pdf: 1274832 bytes, checksum: 2903d62c0dfbdba683d9ccd7a5bfd25e (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsTABLE OF CONTENTS
中文摘要……………………………………………………………………………1
ABSTRACT…….……………………………………………………………………3
ABBREVIATION…………………………………………………………………….5
(1) INTRODUCTION………………………………………………………………7
1.1 Iodoacetamide-based derivatives in previous findings………………………...7
1.2 Tubulin………………………………………………………………………....8
1.3 CCT and its β subunit………………………………………………………….9
1.4 Mitochondria in apoptosis……………………………………………………10
1.5 Extrinsic apoptotic signaling…………………………………………………10
1.6 ER-stress induced apoptosis………………………………………………….11
1.7 Previous studies and the present work……………………………………….13
(2) MATERIALS AND METHODS………………………………………………15
2.1 Reagents, cell lines and cell culture……………………………………….…15
2.2 Protein expression……………………………...............................................15
2.3 Preparation of cell lysates and isolation of cytoplasmic and mitochondrial
fractions…………………………………………………………………..…..16
2.4 Western blot analysis……………………………………………………..….16
2.5 CCT-β pull down assay…………………………………………..……....….17
2.6 Mass spectrometric analysis……………………………………………...….18
2.7 Caspase activity assay…………………………………………………...…..18
2.8 RNA silencing and shRNA lentiviral particles
transduction ………………………………………………………………..….18
(3) RESULTS………………………………………………………………………20
3.1 Cytochrome C release – Time and Dose Dependence of I-Trp Treatment…..20
3.2 Decreased Level of Cytochrome C Release after CCT-β Knock Down by
shRNA ……………………………………………………………………...20
3.3 I-Trp Effects on Caspase-8 and Caspase-10 Activities……………………...21
3.4 Decreased Level of Cytochrome C Release after Inhibition of Caspase-8….22
3.5 I-Trp Induced Caspase-8 and Capsapse-10 Activities was Diminished by
Dantrolene…………………………………………………………………..23
3.6 I-Trp Induced Caspase-4 and Capsapse-5 Activities was Diminished by
Dantrole …………………………………………………………………….24
3.7 in vitro Binding between Recombinant β-tubulin and His-tagged CCT-β…..25
3.8 in vivo Pull Down by Recombinant CCT-β………………………………….26
(4) DISCUSSION…………………………………………………………………28
REFERENCE……………………………………………………………………….34
TABLE……………………………………………………………………………45
FIGURE……………………………………………………………………………47
SUPPLEMENTARY…………………………………………………………………60
dc.language.isoen
dc.subject細胞凋亡zh_TW
dc.subject內質網相關的降解zh_TW
dc.subject粒線體zh_TW
dc.subjectCCT-βen
dc.subjectERADen
dc.subjectcaspaseen
dc.subjectapoptosisen
dc.subjectβ-tubulinen
dc.title於HEK293細胞中破壞β-tubulin/CCT-β蛋白質複合體引發細胞凋亡的分子機制zh_TW
dc.titleMolecular mechanism underlying β-tubulin/CCT-β complex destruction-induced cell apoptosis in HEK293 cellsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳義雄(Yee-Hsiung Chen),張茂山(Mau-Sun Chang)
dc.subject.keyword細胞凋亡,粒線體,內質網相關的降解,zh_TW
dc.subject.keywordCCT-β,β-tubulin,apoptosis,caspase,ERAD,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2010-08-03
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved