請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4596
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 駱尚廉(Shang-Lien Lo) | |
dc.contributor.author | Kwun-Yat Luk | en |
dc.contributor.author | 陸觀一 | zh_TW |
dc.date.accessioned | 2021-05-14T17:43:53Z | - |
dc.date.available | 2017-08-07 | |
dc.date.available | 2021-05-14T17:43:53Z | - |
dc.date.copyright | 2015-08-07 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-03 | |
dc.identifier.citation | [1]. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews 2007, 11 (3), 401-425.
[2]. Kazuhito, H.; Hiroshi, I.; Akira, F., TiO 2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics 2005, 44 (12R), 8269. [3]. Maeda, K., Z-Scheme Water Splitting Using Two Different Semiconductor Photocatalysts. ACS Catalysis 2013, 3 (7), 1486-1503. [4]. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38. [5]. Turner, J. A., A Realizable Renewable Energy Future. Science 1999, 285 (5428), 687-689. [6]. Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H., Graphene‐based materials: synthesis, characterization, properties, and applications. Small 2011, 7 (14), 1876-1902. [7]. Zeng, K.; Zhang, D., Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science 2010, 36 (3), 307-326. [8]. Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D., A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy 2013, 38 (12), 4901-4934. [9]. Pregger, T.; Graf, D.; Krewitt, W.; Sattler, C.; Roeb, M.; Möller, S., Prospects of solar thermal hydrogen production processes. International Journal of Hydrogen Energy 2009, 34 (10), 4256-4267. [10]. Ni, M.; Leung, D. Y. C.; Leung, M. K. H.; Sumathy, K., An overview of hydrogen production from biomass. Fuel Processing Technology 2006, 87 (5), 461-472. [11]. Moon, S.-C.; Mametsuka, H.; Tabata, S.; Suzuki, E., Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catalysis Today 2000, 58 (2–3), 125-132. [12]. Schrauzer, G. N.; Guth, T. D., Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of the American Chemical Society 1977, 99 (22), 7189-7193. [13]. Kawai, T.; Sakata, T., Hydrogen evolution from water using solid carbon and light energy. Nature 1979, 282 (5736), 283-284. [14]. Kawai, T.; Sakata, T., Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature 1980, 286 (5772), 474-476. [15]. Sakata, T.; Kawai, T., Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water. Chemical Physics Letters 1981, 80 (2), 341-344. [16]. Kawai, T.; Sakata, T., Photocatalytic hydrogen production from liquid methanol and water. J. Chem. Soc., Chem. Commun. 1980, (15), 694-695. [17]. Fahlman, B. D., Materials Chemistry. Springer Netherlands: 2011. [18]. Gaya, U. I., Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids. Springer Netherlands: 2014. [19]. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 2009, 38 (1), 253-278. [20]. Bard, A. J., Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. Journal of Photochemistry 1979, 10 (1), 59-75. [21]. Ismail, A. A. B., D. W., Photochemical splitting of water for hydrogen production by photocatalysis: A review. Solar Energy Materials and Solar Cells 2014, 128 (0), 85-101. [22]. Sato, S.; White, J. M., Photodecomposition of water over Pt/TiO2 catalysts. Chemical Physics Letters 1980, 72 (1), 83-86. [23]. Duonghong, D.; Borgarello, E.; Graetzel, M., Dynamics of light-induced water cleavage in colloidal systems. Journal of the American Chemical Society 1981, 103 (16), 4685-4690. [24]. Borgarello, E.; Kiwi, J.; Pelizzetti, E.; Visca, M.; Gratzel, M., Photochemical cleavage of water by photocatalysis. Nature 1981, 289 (5794), 158-160. [25]. Magliozzo, R. S.; Krasna, A. I., HYDROGEN AND OXYGEN PHOTOPRODUCTION BY TITANATE POWDERS. Photochemistry and Photobiology 1983, 38 (1), 15-21. [26]. Ohtani, B., Titania photocatalysis beyond recombination: A critical review. Catalysts 2013, 3 (4), 942-953. [27]. Iwata, K.; Takaya, T.; Hamaguchi, H.-o.; Yamakata, A.; Ishibashi, T.-a.; Onishi, H.; Kuroda, H., Carrier Dynamics in TiO2 and Pt/TiO2 Powders Observed by Femtosecond Time-Resolved Near-Infrared Spectroscopy at a Spectral Region of 0.9−1.5 μm with the Direct Absorption Method. The Journal of Physical Chemistry B 2004, 108 (52), 20233-20239. [28]. Furube, A.; Asahi, T.; Masuhara, H.; Yamashita, H.; Anpo, M., Direct observation of a picosecond charge separation process in photoexcited platinum-loaded TiO2 particles by femtosecond diffuse reflectance spectroscopy. Chemical Physics Letters 2001, 336 (5–6), 424-430. [29]. Anpo, M.; Takeuchi, M., The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis 2003, 216 (1–2), 505-516. [30]. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W., Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews 2014, 114 (19), 9919-9986. [31]. Galińska, A.; Walendziewski, J., Photocatalytic Water Splitting over Pt−TiO2 in the Presence of Sacrificial Reagents. Energy & Fuels 2005, 19 (3), 1143-1147. [32]. Izumi, I.; Dunn, W. W.; Wilbourn, K. O.; Fan, F.-R. F.; Bard, A. J., Heterogeneous photocatalytic oxidation of hydrocarbons on platinized titanium dioxide powders. The Journal of Physical Chemistry 1980, 84 (24), 3207-3210. [33]. Dunn, W. W.; Aikawa, Y.; Bard, A. J., Heterogeneous photosynthetic production of amino acids at platinum/titanium dioxide suspensions by near ultraviolet light. Journal of the American Chemical Society 1981, 103 (23), 6893-6897. [34]. Abe, R.; Sayama, K.; Arakawa, H., Significant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst: suppression of backward reaction. Chemical Physics Letters 2003, 371 (3–4), 360-364. [35]. Khataee, A. R.; Kasiri, M. B., Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. Journal of Molecular Catalysis A: Chemical 2010, 328 (1–2), 8-26. [36]. Pelizzetti, N. S. a. E., Photocatalysis. Wiley: New York, 1989. [37]. Landmann, M.; Rauls, E.; Schmidt, W. G., The electronic structure and optical response of rutile, anatase and brookite TiO 2. Journal of Physics: Condensed Matter 2012, 24 (19), 195503. [38]. Emori, M.; Sugita, M.; Ozawa, K.; Sakama, H., Electronic structure of epitaxial anatase TiO2 films: Angle-resolved photoelectron spectroscopy study. Physical Review B 2012, 85 (3), 035129. [39]. Tang, H.; Prasad, K.; Sanjinès, R.; Schmid, P. E.; Lévy, F., Electrical and optical properties of TiO2 anatase thin films. Journal of Applied Physics 1994, 75 (4), 2042-2047. [40]. Di Valentin, C.; Selloni, A., Bulk and Surface Polarons in Photoexcited Anatase TiO2. The Journal of Physical Chemistry Letters 2011, 2 (17), 2223-2228. [41]. Pascual, J.; Camassel, J.; Mathieu, H., Fine structure in the intrinsic absorption edge of TiO2. Physical Review B 1978, 18 (10), 5606-5614. [42]. Glassford, K. M.; Chelikowsky, J. R., Structural and electronic properties of titanium dioxide. Physical Review B 1992, 46 (3), 1284-1298. [43]. Amtout, A.; Leonelli, R., Optical properties of rutile near its fundamental band gap. Physical Review B 1995, 51 (11), 6842-6851. [44]. Liu, L.; Zhao, H.; Andino, J. M.; Li, Y., Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis 2012, 2 (8), 1817-1828. [45]. Batzill, M., Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy & Environmental Science 2011, 4 (9), 3275-3286. [46]. Xu, M.; Gao, Y.; Moreno, E. M.; Kunst, M.; Muhler, M.; Wang, Y.; Idriss, H.; Wöll, C., Photocatalytic Activity of Bulk TiO2 Anatase and Rutile Single Crystals Using Infrared Absorption Spectroscopy. Physical Review Letters 2011, 106 (13), 138302. [47]. Yamada, Y.; Kanemitsu, Y., Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals. Applied Physics Letters 2012, 101 (13), 133907. [48]. Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M., Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Sci. Rep. 2014, 4. [49]. Ohtani, B.; Prieto-Mahaney, O. O.; Li, D.; Abe, R., What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry 2010, 216 (2–3), 179-182. [50]. Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, M. C., Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR. The Journal of Physical Chemistry B 2003, 107 (19), 4545-4549. [51]. Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P.; Watson, G. W.; Keal, T. W.; Sherwood, P.; Walsh, A.; Sokol, A. A., Band alignment of rutile and anatase TiO2. Nat Mater 2013, 12 (9), 798-801. [52]. Boehm, H. P.; Clauss, A.; Fischer, G. O.; Hofmann, U., Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien. Zeitschrift für anorganische und allgemeine Chemie 1962, 316 (3-4), 119-127. [53]. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669. [54]. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (30), 10451-10453. [55]. Avouris, P., Graphene: Electronic and Photonic Properties and Devices. Nano Letters 2010, 10 (11), 4285-4294. [56]. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G., Processable aqueous dispersions of graphene nanosheets. Nat Nano 2008, 3 (2), 101-105. [57]. Brodie, B. C., Sur le poids atomique du graphite. Ann Chim Phys 1860, 59, 466-472. [58]. Staudenmaier, L., Verfahren zur Darstellung der Graphitsäure. Berichte der deutschen chemischen Gesellschaft 1898, 31 (2), 1481-1487. [59]. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339. [60]. Kotov, N. A.; Dékány, I.; Fendler, J. H., Ultrathin graphite oxide–polyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states. Advanced Materials 1996, 8 (8), 637-641. [61]. Cassagneau, T.; Guérin, F.; Fendler, J. H., Preparation and Characterization of Ultrathin Films Layer-by-Layer Self-Assembled from Graphite Oxide Nanoplatelets and Polymers. Langmuir 2000, 16 (18), 7318-7324. [62]. Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D., Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chemistry of Materials 1999, 11 (3), 771-778. [63]. Hirata, M.; Gotou, T.; Ohba, M., Thin-film particles of graphite oxide. 2: Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits. Carbon 2005, 43 (3), 503-510. [64]. Szabó, T.; Szeri, A.; Dékány, I., Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 2005, 43 (1), 87-94. [65]. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558-1565. [66]. Kim, M.; Hwang, S. H.; Lim, S. K.; Kim, S., Effects of ion exchange and calcinations on the structure and photocatalytic activity of hydrothermally prepared titanate nanotubes. Crystal Research and Technology 2012, 47 (11), 1190-1194. [67]. Rajeshwar, K.; Osugi, M. E.; Chanmanee, W.; Chenthamarakshan, C. R.; Zanoni, M. V. B.; Kajitvichyanukul, P.; Krishnan-Ayer, R., Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2008, 9 (4), 171-192. [68]. Likodimos, V.; Stergiopoulos, T.; Falaras, P.; Kunze, J.; Schmuki, P., Phase Composition, Size, Orientation, and Antenna Effects of Self-Assembled Anodized Titania Nanotube Arrays: A Polarized Micro-Raman Investigation. The Journal of Physical Chemistry C 2008, 112 (33), 12687-12696. [69]. Hoyer, P., Formation of a Titanium Dioxide Nanotube Array. Langmuir 1996, 12 (6), 1411-1413. [70]. Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W.; Singh, R. S.; Chen, Z.; Dickey, E. C., Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research 2001, 16 (12), 3331-3334. [71]. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Titania Nanotubes Prepared by Chemical Processing. Advanced Materials 1999, 11 (15), 1307-1311. [72]. Ou, H.-H.; Lo, S.-L., Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and Purification Technology 2007, 58 (1), 179-191. [73]. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Formation of Titanium Oxide Nanotube. Langmuir 1998, 14 (12), 3160-3163. [74]. Hernandez-Alonso, M. D.; Garcia-Rodriguez, S.; Sanchez, B.; Coronado, J. M., Revisiting the hydrothermal synthesis of titanate nanotubes: new insights on the key factors affecting the morphology. Nanoscale 2011, 3 (5), 2233-2240. [75]. Chen, Q.; Zhou, W.; Du, G. H.; Peng, L. M., Trititanate Nanotubes Made via a Single Alkali Treatment. Advanced Materials 2002, 14 (17), 1208-1211. [76]. Zhang, M.; Jin, Z.; Zhang, J.; Guo, X.; Yang, J.; Li, W.; Wang, X.; Zhang, Z., Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. Journal of Molecular Catalysis A: Chemical 2004, 217 (1–2), 203-210. [77]. Liu, N.; Chen, X.; Zhang, J.; Schwank, J. W., A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis Today 2014, 225 (0), 34-51. [78]. Li, M.-J.; Chi, Z.-Y.; Wu, Y.-C., Morphology, Chemical Composition and Phase Transformation of Hydrothermal Derived Sodium Titanate. Journal of the American Ceramic Society 2012, 95 (10), 3297-3304. [79]. Nakahira, A.; Kubo, T.; Numako, C., Formation Mechanism of TiO2-Derived Titanate Nanotubes Prepared by the Hydrothermal Process. Inorganic Chemistry 2010, 49 (13), 5845-5852. [80]. Ma, R.; Bando, Y.; Sasaki, T., Directly Rolling Nanosheets into Nanotubes. The Journal of Physical Chemistry B 2004, 108 (7), 2115-2119. [81]. Wang, Y. Q.; Hu, G. Q.; Duan, X. F.; Sun, H. L.; Xue, Q. K., Microstructure and formation mechanism of titanium dioxide nanotubes. Chemical Physics Letters 2002, 365 (5–6), 427-431. [82]. Zhang, S.; Chen, Q.; Peng, L. M., Structure and formation of H2Ti3O7 nanotubes in an alkali environment. Physical Review B 2005, 71 (1), 014104. [83]. Zhang, S.; Peng, L. M.; Chen, Q.; Du, G. H.; Dawson, G.; Zhou, W. Z., Formation Mechanism of H2Ti3O7 Nanotubes. Physical Review Letters 2003, 91 (25), 256103. [84]. Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C., The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry 2004, 14 (22), 3370-3377. [85]. Bavykin, D. V.; Kulak, A. N.; Walsh, F. C., Metastable Nature of Titanate Nanotubes in an Alkaline Environment. Crystal Growth & Design 2010, 10 (10), 4421-4427. [86]. Morgan, D. L.; Liu, H.-W.; Frost, R. L.; Waclawik, E. R., Implications of Precursor Chemistry on the Alkaline Hydrothermal Synthesis of Titania/Titanate Nanostructures. The Journal of Physical Chemistry C 2010, 114 (1), 101-110. [87]. Dong, P.; Liu, B.; Wang, Y.; Guo, L.; Huang, Y.; Yin, S., A Study on the H2Ti3O7 Sheet-Like Products During the Formation Process of Titanate Nanotubes. Journal of The Electrochemical Society 2011, 158 (9), K183-K186. [88]. Sreekantan, S.; Wei, L. C., Study on the formation and photocatalytic activity of titanate nanotubes synthesized via hydrothermal method. Journal of Alloys and Compounds 2010, 490 (1–2), 436-442. [89]. Zhu; Gao; Lan, Y.; Song; Xi; Zhao, Hydrogen Titanate Nanofibers Covered with Anatase Nanocrystals: A Delicate Structure Achieved by the Wet Chemistry Reaction of the Titanate Nanofibers. Journal of the American Chemical Society 2004, 126 (27), 8380-8381. [90]. Zhu, H. Y.; Lan, Y.; Gao, X. P.; Ringer, S. P.; Zheng, Z. F.; Song, D. Y.; Zhao, J. C., Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions. Journal of the American Chemical Society 2005, 127 (18), 6730-6736. [91]. Nakahira, A.; Kubo, T.; Numako, C., TiO2-Derived Titanate Nanotubes by Hydrothermal Process with Acid Treatments and Their Microstructural Evaluation. ACS Applied Materials & Interfaces 2010, 2 (9), 2611-2616. [92]. Yu, J.; Yu, H.; Cheng, B.; Trapalis, C., Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes. Journal of Molecular Catalysis A: Chemical 2006, 249 (1–2), 135-142. [93]. Tsai, C.-C.; Teng, H., Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments. Chemistry of Materials 2006, 18 (2), 367-373. [94]. Bavykin, D. V.; Carravetta, M.; Kulak, A. N.; Walsh, F. C., Application of Magic-Angle Spinning NMR to Examine the Nature of Protons in Titanate Nanotubes. Chemistry of Materials 2010, 22 (8), 2458-2465. [95]. Huang, J.; Cao, Y.; Wang, M.; Huang, C.; Deng, Z.; Tong, H.; Liu, Z., Tailoring of Low-Dimensional Titanate Nanostructures. The Journal of Physical Chemistry C 2010, 114 (35), 14748-14754. [96]. Xiao, N.; Li, Z.; Liu, J.; Gao, Y., Effects of calcination temperature on the morphology, structure and photocatalytic activity of titanate nanotube thin films. Thin Solid Films 2010, 519 (1), 541-548. [97]. Kiatkittipong, K.; Scott, J.; Amal, R., Hydrothermally Synthesized Titanate Nanostructures: Impact of Heat Treatment on Particle Characteristics and Photocatalytic Properties. ACS Applied Materials & Interfaces 2011, 3 (10), 3988-3996. [98]. Tsai, C.-C.; Teng, H., Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment. Chemistry of Materials 2004, 16 (22), 4352-4358. [99]. Perera, S. D.; Mariano, R. G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus, K. J., Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity. ACS Catalysis 2012, 2 (6), 949-956. [100]. Dimiev, A.; Kosynkin, D. V.; Alemany, L. B.; Chaguine, P.; Tour, J. M., Pristine Graphite Oxide. Journal of the American Chemical Society 2012, 134 (5), 2815-2822. [101]. Brimacombe, J. S.; Foster, A. B.; Hancock, E. B.; Overend, W. G.; Stacey, M., 40. Aspects of stereochemistry. Part III. Acidic and basic hydrolysis of some diol cyclic sulphates and related compounds. Journal of the Chemical Society (Resumed) 1960, (0), 201-211. [102]. Khan, U.; O’Neill, A.; Porwal, H.; May, P.; Nawaz, K.; Coleman, J. N., Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 2012, 50 (2), 470-475. [103]. Pei, S.; Cheng, H.-M., The reduction of graphene oxide. Carbon 2012, 50 (9), 3210-3228. [104]. Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J., P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano 2010, 4 (1), 380-386. [105]. Williams, G.; Seger, B.; Kamat, P. V., TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano 2008, 2 (7), 1487-1491. [106]. Zhang, Y.; Pan, C., TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. Journal of Materials Science 2011, 46 (8), 2622-2626. [107]. McAllister, M. J.; Li, J.-L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay, I. A., Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chemistry of Materials 2007, 19 (18), 4396-4404. [108]. Rourke, J. P.; Pandey, P. A.; Moore, J. J.; Bates, M.; Kinloch, I. A.; Young, R. J.; Wilson, N. R., The Real Graphene Oxide Revealed: Stripping the Oxidative Debris from the Graphene-like Sheets. Angewandte Chemie International Edition 2011, 50 (14), 3173-3177. [109]. Hontoria-Lucas, C.; López-Peinado, A. J.; López-González, J. d. D.; Rojas-Cervantes, M. L.; Martín-Aranda, R. M., Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon 1995, 33 (11), 1585-1592. [110]. Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I., Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chemistry of Materials 2006, 18 (11), 2740-2749. [111]. Jeong, H.-K.; Lee, Y. P.; Lahaye, R. J. W. E.; Park, M.-H.; An, K. H.; Kim, I. J.; Yang, C.-W.; Park, C. Y.; Ruoff, R. S.; Lee, Y. H., Evidence of Graphitic AB Stacking Order of Graphite Oxides. Journal of the American Chemical Society 2008, 130 (4), 1362-1366. [112]. Gao, X.; Jang, J.; Nagase, S., Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design. The Journal of Physical Chemistry C 2010, 114 (2), 832-842. [113]. Bruice, P. Y., Organic Chemistry. 6 ed.; Prentice Hall: 2010. [114]. Khomenko, V. M.; Langer, K.; Rager, H.; Fett, A., Electronic absorption by Ti3+ ions and electron delocalization in synthetic blue rutile. Phys Chem Min 1998, 25 (5), 338-346. [115]. Gupta, S. S.; Sreeprasad, T. S.; Maliyekkal, S. M.; Das, S. K.; Pradeep, T., Graphene from Sugar and its Application in Water Purification. ACS Applied Materials & Interfaces 2012, 4 (8), 4156-4163. [116]. Yun, S.-M.; Palanivelu, K.; Kim, Y.-H.; Kang, P.-H.; Lee, Y.-S., Preparation and characterization of carbon covered TiO2 using sucrose for solar photodegradation. Journal of Industrial and Engineering Chemistry 2008, 14 (5), 667-671. [117]. Eigler, S.; Enzelberger-Heim, M.; Grimm, S.; Hofmann, P.; Kroener, W.; Geworski, A.; Dotzer, C.; Röckert, M.; Xiao, J.; Papp, C.; Lytken, O.; Steinrück, H.-P.; Müller, P.; Hirsch, A., Wet Chemical Synthesis of Graphene. Advanced Materials 2013, 25 (26), 3583-3587. [118]. Hu, C.; Liu, Y.; Yang, Y.; Cui, J.; Huang, Z.; Wang, Y.; Yang, L.; Wang, H.; Xiao, Y.; Rong, J., One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. Journal of Materials Chemistry B 2013, 1 (1), 39-42. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4596 | - |
dc.description.abstract | 自1970年代石油危機,利用光能生產氫氣作為替代能源的技術逐漸受關注。起因於1972本多藤島效應的發現,以半導體受光催化來分解水的研究,成為綠色能源的新課題。隨後,水分解的異相光催化系統(Heterogeneous photocatalytic system)有賴光催化材料的改善,和犧牲劑的投入得以逐步發展。
在眾多具備光催化活性的半導體中,以二氧化鈦 (TiO2)的歷來研究最為豐富及深入,加上便宜、無毒、以及化學、光學穩定性好,二氧化鈦是最有潛力投入工業尺度應用的材料。 近年來,石墨烯受到奈米研究領域的關注。利用氧化減薄法,可以既簡便而又大量地製備氧化石墨烯 (GO)。理論上,還原氧化石墨烯 (rGO)導電性良好,加上可以進行奈米尺度的修飾,適合用作改善二氧化鈦的光催化活性。考慮石墨烯披覆於二氧化鈦的技術各式各樣,本研究分別以水熱還原法 (HrGO)、光還原法 (PrGO)及熱還原法 (TrGO)製備TiO2/rGO,並發現TiO2/HrGO在紫外光下 (365nm)催化產氫表現最好,1%披覆比例的產氫量比純TiO2提升2.7倍。 另外,本研究對二氧化鈦進行同時改質、披覆上石墨烯及進行還原,製備出二氧化鈦奈米管/還原氧化石墨烯 (TiNT/rGO)。在改質過程中,由於晶型改變使TiNT吸收峰藍移,在0%及1%披覆比例下產氫量較TiO2差。但由於比表面積大,當披覆比例提升至2%,TiNT/rGO的產氫量比純TiO2提升了13倍。 | zh_TW |
dc.description.abstract | 1970s was known to be the time of oil crisis. Since then, technologies of utilizing light to produce hydrogen energy had drawn much attention. Hydrogen produced from water splitting was considered to be one of the potential candidates of alternative energy owing to the discovery of Honda-Fujishima effect. By applying sacrificial reagents and improving photocatalysts, heterogeneous photocatalytic system of water splitting became possible few years later.
Among various semiconductors, TiO2 is probably the most suitable material for industrial scale photocatalysts in future. TiO2 is cheap, nontoxic and stable. Its properties had also been well studied. Recently, nanomaterial researchers had been concerned about graphene. Oxidative exfoliation allows graphene oxide (GO) to be synthesized in gram-scale through facile method. Theoretically, reduced GO (rGO) possess good conductivity. Also GO is capable to be manipulated under nanometer scale, which is suitable for composition on TiO2 powder to further enhance photocatalytic activity. Considering various existing reduction methods, here in we synthesized TiO2/rGO by hydrothermal reduction (HrGO), photo-assisted reduction (PrGO) and thermal reduction (TrGO). Under UV irradiation, TiO2/HrGO was discovered to perform best among others, with 2.7 fold hydrogen production for 1%w/w compare with mere TiO2. In addition, synthesizing TiO2 nanotube (TiNT) with simultaneous composition and reduction of GO had been achieved to produce TiNT/rGO. Crystallinity changed along with nanotube fabrication and subsequent blue shift of absorption edge was observed. As a result, TiNT of 0% and 1%w/w rGO composition possess worse photocatalytic activities than that of TiO2. For the fact that specific surface area of TiNT is much higher than TiO2, hydrogen production rate of 2% composition of rGO on TiNT increased dramatically by 13 fold compare to mere TiO2 | en |
dc.description.provenance | Made available in DSpace on 2021-05-14T17:43:53Z (GMT). No. of bitstreams: 1 ntu-104-R02541136-1.pdf: 5619916 bytes, checksum: caa184cf7807239ad49e5900b06c88b8 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目錄
中文摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 1.3 研究內容 2 第二章 研究背景 3 2.1 光催化產氫 3 2.1.1光伏電解法 3 2.1.2太陽能集熱法 4 2.1.3光生物法 4 2.1.4光電化學法 5 2.2光催化產氫原理 6 2.2.1水分解的化學意義 6 2.2.2光觸媒催化 6 2.2.3還原電位 10 2.2.4電荷分離 12 2.3光催化材料 17 2.3.1二氧化鈦 18 2.3.2 石墨烯 19 2.3.3 二氧化鈦奈米管 22 第三章 實驗材料與方法 29 3.1 實驗藥品與設備 29 3.1.1實驗藥品 29 3.1.2實驗設備 31 3.2 實驗方法 32 3.2.1實驗設計 32 3.2.2製備氧化石墨烯 33 3.2.3製備TiO2/rGO 35 3.2.4製備TiNT/rGO 37 3.2.5光催化材料特性分析 38 3.2.6光催化產氫實驗 40 第四章 結果與討論 42 4.1特性鑑定 42 4.1.1掃描式電子顯微鏡/X光能量分散光譜儀 42 4.1.2 穿透式電子顯微鏡 44 4.1.3傅立葉轉換紅外光譜儀 49 4.1.4 X光粉末繞射圖譜 51 4.1.5 紫外-可見光吸收度圖譜 55 4.2 光催化產氫 59 4.2.1空白實驗 59 4.2.2 TiO2/rGO 60 4.2.3 TiNT/rGO 62 4.3 rGO與光催化效率之關係 66 第五章 結論及建議 68 5.1 結論 68 5.2 建議 69 參考文獻 70 附錄 82 | |
dc.language.iso | zh-TW | |
dc.title | 以石墨烯修飾二氧化鈦粒子及奈米管進行光催化甲醇溶液產氫之研究 | zh_TW |
dc.title | Photocatalytic Hydrogen Production in Methanol Solution using Graphene Composited TiO2 particles and Nanotubes under Light Irradiation | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林正芳(Cheng-Fang Lin),張慶源(Ching-Yuan Chang) | |
dc.subject.keyword | 二氧化鈦,石墨烯,奈米管,異相光催化系統,氫氣, | zh_TW |
dc.subject.keyword | Graphene,Nanotube,Heterogeneous photocatalytic system,Hydrogen,Titanium dioxide, | en |
dc.relation.page | 86 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2015-08-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf | 5.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。