請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45955
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李篤中(Duu-Jong Lee) | |
dc.contributor.author | Yu-Chaun Juang | en |
dc.contributor.author | 莊育權 | zh_TW |
dc.date.accessioned | 2021-06-15T04:49:45Z | - |
dc.date.available | 2010-08-03 | |
dc.date.copyright | 2010-08-03 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-02 | |
dc.identifier.citation | Adav S.S., Chang C.H., Lee D.J., Hydraulic characteristics of aerobic granules using size exclusion chromatography. Biotechnol Bioeng 2008; 99:791–799
Adav S.S., Chen M.Y., Lee D.J., Ren N.Q., Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis. Biotechnol Bioeng 2007a; 96:844–852 Adav S.S., Lee D.J., Physiological characterization and interactions of isolates in phenol degrading aerobic granules. Appl. Microbiol Biotechnol. 2008a; 78:899–905 Adav S.S., Lee D.J., Lai J.Y., Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances. Appl. Microbiol. Biotechnol. 2007b; 77:175–182 Arrojo B., Mosquera-Corral A., Garrido J.M., Mendez R., Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Res. 2004; 38:3389–3399 Bathe S., Mohan T.V.K., Wuertz S., Hausner M., Bioaugmentation of a sequencing batch biofilm reactor by horizontal gene transfer. Water Sci. Technol. 2004; 49:337–343. Beun J.J., Hendriks A., van Loosdrecht M.C.M., Morgenroth E., Wilderer P.A., Heijnen J.J., Aerobic granulation in a sequencing batch reactor. Water Res. 1999; 33:2283–2290 Beun J.J., Heijnen J.J., van Loosdrecht M.C.M., N-removal in a granular sludge sequencing batch airlift reactor. Biotechnol. Bioeng. 2001; 75:82–92 Beun J.J., van Loosdrecht M.C.M., Heijnen J.J., Aerobic granulation in a sequencing batch airlift reactor. Water Res. 2002; 36:702–712. Bossier P., Verstraete W., Triggers for microbial aggregation in activated sludge? Appl. Microbiol. Biotechnol. 1996; l45:1–6. Cammarota M.C., Sant'Anna G.L., Metabolic blocking of exopolysaccharides synthesis: effects on microbial adhesion and biofilm accumulation. Biotechnol. Lett. 1998; 20: 1–4. Castellanos T., Ascencio F., Bashan Y., Starvation-induced changes in the cell surface of Azospirillum lipoferum. FEMS Microbiol. Ecol. 2000; 33:1–9. Chang I.S., Choo K.H., Lee C.H., Pek U.H., Koh U.C., Kim S.W., Koh J.H., Application of ceramic membrane as a pretreatment in anaerobic digestion of alcohol-distillery wastes, J. Membr. Sci. 1994; 90:131–139. Chang I.S., Gander M., Jefferson B., Judd S.J., Low-cost membranes for use in a submerged MBR, Proc. Saf. Environ. Protect. 2001; 79:183–188 Chang S., Fane A.G., Vigneswaran S., Modeling and optimizing submerged hollowfiber membrane modules, AIChE J. 2002; 48:2203–2212 Chen G., Strevett K.A., Impact of carbon and nitrogen conditions on E. coli surface thermodynamics. Colloids Surf B: Biointerfaces 2003; 28:135–46 Choi H., Zhang K., Dionysiou D.D., Oerther D.B., Sorial G.A., Effect of permeate flux and tangential flow on membrane fouling for wastewater treatment, Sep. Purif. Technol. 2005; 45:68–78 Choi H., Zhang K., Dionysiou D.D., Oerther D.B., Sorial G.A., Effect of activated sludge properties and membrane operation conditions on fouling characteristics in membrane bioreactors, Chemosphere 2006; 63:1699–1708 Choo K.H., Lee C.H., Effect of anaerobic digestion broth composition on membrane permeability, Water Sci. Technol. 1996; 34:173–179 Choo K.H., Lee C.H., Hydrodynamic behavior of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor, Water Res. 1998; 32:3387–3397 Chou H.H., Huang J.S., Comparative granule characteristics and biokinetics of sucrose-fed and phenol-fed UASB reactors. Chemosphere 2005; 59:107–116 Chou H.H., Huang J.S., Hong W.F., Temperature dependency of granule characteristics and kinetic behavior in UASB reactors. J. Chem. Technol. Biotechnol. 2004; 79:797–808. Costerton J.W., Irvin R.T., Cheng K.J., The bacterial glycocalyx in nature and disease. Annu. Rev. Microbiol. 1981; 35:299−224. Cui Z.F., Chang S., Fane A.G., The use of gas bubbling to enhance membrane processes, J. Membr. Sci. 2003; 221:1–35. Dangcong P., Bernet N., Delgenes J.P., Moletta R., Aerobic granular sludge — a case report. Water Res. 1999; 33:890–893 de Bruin L.M.M, Kreuk M.K, de Roest H.F.R, van der Uijterlinde C., van Loosdrecht M.C.M., Aerobic granular sludge technology: alternative for activated sludge? Water Sci. Technol. 2004; 49:1–7. de Kreuk M.K., Picioreanu C., Hosseini M., Xavier J.B., van Loosdrecht M.C.M., Kineticmodel of a granular sludge SBR: influences on nutrient removal. Biotechnol. Bioeng. 2007a; 97: 801–815. de Kreuk M.K., Kishida N., van Loosdrecht M.C.M., Aerobic granular sludge — state of theart. Water Sci. Technol. 2007b; 55:75–81. Ducom G., Puech F.P., Cabassud C., Air sparging with flat sheet nanofiltration: a link between wall shear stresses and flux enhancement, Desalination 2002; 145:97–102 Fang H.H.P., Shi X., Pore fouling of microfiltration membranes by activated sludge, J. Membr. Sci. 2005; 264:161–166 Gander M.A., Jefferson B., Judd S.J., Membrane bioreactors for use in smallwastewater treatment plants: membrane materials and effluent quality, Water Sci. Technol. 2000; 41:205–211 Hai F.I., Yamamoto K., Fukushi K., Different fouling modes of submerged hollow-fiber and flat-sheet membranes induced by high strength wastewater with concurrent biofouling, Desalination 2005; 180:89–97. He Y., Xu P., Li C., Zhang B., High-concentration food wastewater treatment by an anaerobic membrane bioreactor, Water Res. 2005; 39:4110–4118 Heijnen J.J., van Loosdrecht M.C.M. Method for acquiring grain-shaped growth of a microorganism in a reactor. European patent EP0826639, 1998 Ho C.C., Zydney A.L., Overview of fouling phenomena and modeling approaches for membrane bioreactors, Sep. Sci. Technol. 2006 ; 41:1231–1251 Hu L., Wang J., Wen X., Qian Y., The formation and characteristics of aerobic granules in sequencing batch reactor (SBR) by seeding anaerobic granules. Process Biochem. 2005; 40:5–11 Jang A., Yoon Y.H., Kim I.S., Kim K.S., Bishop P.L., Characterization and evaluation of aerobic granules in sequencing batch reactor. J. Biotechnol. 2003; 105:71–82 Jang N., Ren X., Choi K., Kim I.S., Comparison of membrane biofouling in nitrification and denitrification for the membrane bio-reactor (MBR), in Proceedings of the IWA on Aspire, Singapore, 2005 Jiang H.L., Tay J.H., Tay S.T.L., Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Lett. Appl. Microbiol. 2002; 35:439–445 Jiang H.L., Tay J.H., Tay S.T.L., Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading. Appl. Microbiol. Biotechnol. 2004; 63:602–608 Judd S.J., Le-Clech P., Taha T., Cui Z.F., Theoretical and experimental representation of a submerged MBR system, in Proceedings of the MBR 3, Cranfield University, UK, 2001 Jun A., Yang F.L., Meng F.G., Peng A., Di W., Comparison of membrane fouling during shortterm filtration of aerobic granular sludge and activated sludge. J. Environ. Sci.-China 2007; 19:1281–1286 Kang S., Hoek E.M.V., Choi H., Shin H., Effect of membrane surface properties during the fast evaluation of cell attachment, Sep. Sci. Technol. 2006; 41:1475–1487 Kim I.S., Kim S.M., Jang A., Characterization of aerobic granules by microbial density at different COD loading rates. Bioresource Technol. 2008; 99:18–25. Kim J., Jang M., Chio H., Kim S., Characteristics of membrane and module affecting membrane fouling, in Proceedings of the Water Environment-Membrane Technology Conference, Seoul, Korea, 2004. Kolenbrander P.E., Andersen R.N., Holdeman L.V., Coaggregation of oral bacteroides species with other bacteria: central role in coaggregation bridges and competitions. Infection Immunol. 1985; 48:741–746 Kolenbrander P.E., Andersen R.N., Clemans D.L., Whittaker C.J., Klier C.M., Potential role of functionally similar coaggregation mediators in bacterial succession. In Newman HN, Wilson M, editors. Dental plaque revisited: oral biofilms in health and disease. Bioline, Cardiff, United Kingdom; 1999. Laspidou C.S., Rittmann B.E., A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass, Water Res. 2002; 36:2711–2720 Le-Clech P., Jefferson B., Judd S.J., Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor, J. Membr. Sci. 2003; 218:117–129. Lee W., Jeon J.-H., Cho Y., Chung K.Y., Min B.-R., Behavior of TMP according to membrane pore size, in: Proceedings of the International Congress on Membranes and Membrane Processes (ICOM), Seoul, Korea, 2005 Lettinga G., van Velsen A.F.M, Hobma S.W., de Zeeuw W., Klapwijk A., Use of the upflowsludge blanket (USB) reactor concept for biological waste water treatmentespecially for anaerobic treatment. Biotechnol. Bioeng. 1980; 22:699−634 Liu Y., Fang H.H.P., Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge, Crit. Rev. Environ. Sci. Technol. 2003; 33:237–273. Lin Y.M., Liu Y., Tay J.H., Development and characteristics of phosphorous-accumulating granules in sequencing batch reactor. Appl. Microbiol. Biotechnol. 2003; 62:430–435 Liu Y.Q., Liu Y., Tay J.H., The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl. Microbiol. Biotechnol. 2004b; 65:143–148. Lin Y.M., Liu Y., Tay J.H., Development and characteristics of phosphorous-accumulating granules in sequencing batch reactor. Appl. Microbiol. Biotechnol. 2003; 62:430–435 Liu Y., Tay J.H., The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 2002; 36:1653–65. Liu Y., Tay J.H., State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv. 2004; 22:533–563 Liu Y.Q., Tay J.H., Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors. Bioresource Technol. 2008; 99:980–985 Liu Y., Yang S.F., Liu Q.S., Tay J.H., The role of cell hydrophobicity in the formation of aerobic granules. Curr. Microbiol. 2003; 46:270–274. Liu Y., Yang S.Y., Tay J.H., Liu Q.S., Qin L,, Li Y., Cell hydrophobicity is a triggering force of biogranulation. Enzyme Microb. Technol. 2004a; 34:371–9 Liu Y.Q., Wu W.W., Tay J.H., Wang J.L., Starvation is not a prerequisite for the formation of aerobic granules. Appl. Microbiol. Biotechnol. 2007; 76:211–216 Liu Y., Wang Z.W., Qin L., Liu Y.Q., Tay J.H., Selection pressure-driven aerobic granulation in a sequencing batch reactor. Appl. Microbiol. Biotechnol. 2005; 67:26–32. Lubbecke S., Vogelpohl A., Dewjanin W., Wastewater treatment in a biological high-performance system with high biomass concentration, Water Res. 1995; 29: 793–802 Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951; 193:265–275 Mahoney E.M., Varangu L.K., Cairns W.L., Kosaric N., Murray R.G.E. The effect of calcium on microbial aggregation during UASB reactor start-up. Water Sci. Technol. 1987; 19:249–260. Madaeni S.S., Fane A.G., Wiley D.E., Factors influencing critical flux in membrane filtration of activated sludge, J. Chem. Technol. Biotechnol. 1999; 74:539–543 Maximova N., Dahl O., Environmental implications of aggregation phenomena: current understanding. Curr. Opin. Colloid Interface Sci. 2006; 11:246–66 McSwain B.S., Irvine R.L., Wilderer P.A., The influence of settling time on the formation of aerobic granules. Water Sci. Technol. 2004; 50:195−202 McSwain B.S., Irvine R.L., Hausner M., Wilderer P.A., Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl. Environ. Microbiol. 2005; 71:1051–1057. Meyer R.L., Saunders A.M., Zeng R.J., Keller J., Blackall L.L., Microscale structure and function of anaerobic– aerobic granules containing glycogen accumulating organisms. FEMS Microbiol. Ecol. 2003; 45:253–261. Morgenroth E., Sherden T., van Loosdrecht M.C.M., Heijnen J.J., Wilderer P.A., Aerobic granular sludge in a sequencing batch reactor. Water Res. 1997; 31:3191–3194 Moy B.Y.P., Tay J.H., Toh S.K., Liu Y., Tay S.T.L., High organic loading influences the physical characteristics of aerobic sludge granules. Lett. Appl. Microbiol. 2002; 34:407–412 Mu Y., Ren T.T., Yu H.Q., Drag coefficient of porous and permeable microbial granules. Environ Sci. Technol. 2008; 42:1718–1723. Muyzer G., De Waal E.C., Uitterlinden A.G., Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993; 59:695–700. Ndinisa N.V., Fane A.G., Wiley D.E., Fletcher D.F., Fouling control in a submerged flat sheet membrane system. Part II. Two-Phase flow characterization and CFD simulations, Sep. Sci. Technol. 2006; 41:1411–1445 Ni B.J., Yu H.Q., Storage and growth of denitrifiers in aerobic granules: Part I. Model development. Biotechnol. Bioeng. 2008; 99:314–323. Ni B.J., Yu H.Q., Sun Y.J., Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules. Water Res. 2007; 42:1583-1594 Ni B.J., Yu H.Q., Xie W.M., Storage and growth of denitrifiers in aerobic granules: Part II. Model calibration and verification. Biotechnol. Bioeng. 2008; 99:324–332. Palmer R.J., Kazmerzak K., Hansen M.C., Kolenbrander P.E., Mutualism versus independence: Strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infec. Immunol. 2001; 69:5794−5804 Qin L., Liu Y., Tay J.H., Effect of settling time on aerobic granulation in sequencing batch reactor. Biochem. Eng. J. 2004; 21:47–52 Rosenberger S., Evenblij H., te Poele S., Wintgens T., Laabs C., The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes-six case studies of different European research groups, J. Membr. Sci. 2005; 263:113–126 Sanin S.L., Effect of starvation on resuscitation and the surface characteristics of bacteria. J. Environ. Sci. Health. A 2003a; 38:1517–28. Sanin S.L., Sanin F.D., Bryers J.D., Effect of starvation on the adhesive properties of xenobiotic degrading bacteria. Process Biochem. 2003b; 38:909–14. Schmidt J.E., Ahring B.K., Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl. Microbiol. Biotechnol. 1994; 42: 457–62. Schwarzenbeck N., Borges J.M., Wilderer P.A., Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl. Microbiol. Biotechnol. 2005; 66:711–718 Sheng G.P., Yu H.Q., Characterization of extracellular polymeric substances of aerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Res. 2006; 40:1233–1239. Smith C.V., DiGregorio D., Talcott R.M., The use of ultrafiltration membranes for activated sludge separation, in Proceedings of the 24th Annual Purdue Industrial Waste Conference, 1969. Stuermer D.H., Ng D.J., Morris C.J., Organic contaminants in groundwater near an underground coal gasification site in northeastern Wyoming. Environ. Sci. Technol. 1982; 16:582–587 Su K.Z., Yu H.Q., Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. Environ. Sci. Technol. 2005; 39: 2818–2828 Tay J.H., Liu Q.S., Liu Y., Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J. Appl. Microbiol. 2001; 91:168–175 Tay J.H., Liu Q.S., Liu Y., Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors. Environ. Technol. 2002a; 23:931–936 Tay J.H., Pan S., He Y.X., Tay S.T.L., Effect of organic loading rate on aerobic granulation: Part II. Characteristics of aerobic granules. J. Environ. Eng. 2004a; 130:1102–1109 Tay J.H., Jiang H.L., Tay S.T.L., High-rate biodegradation of phenol by aerobically grown microbial granules. J. Environ. Eng. 2004b; 130:1415–1423. Tay S.T.L., Ivanov V., Yi S., Zhuang W.Q., Tay J.H., Presence of anaerobic Bacteroides in aerobically grown microbial granules. Microbiol. Ecol. 2002b; 44:278–285 Tay J.H., Yang S.F., Liu Y., Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Appl. Microbiol. Biotechnol. 2002c; 59:332–337. Tay S.T.L., Moy B.Y.P., Jiang H.L., Tay J.H., Rapid cultivation of stable aerobic phenol-degrading granules using acetate-fed granules as microbial seed. J. Biotechnol. 2005a; 115: 387–395. Tay S.T.L., Moy B.Y.P., Maszenan A.M., Tay J.H., Comparing activated sludge and aerobic granules as microbial inocula for phenol biodegradation. Appl. Microbiol. Biotechnol. 2005b; 67:708–713 Tay J.H., Yang P., Zhuang W.Q., Tay S.T.L., Pan Z.H., Reactor performance and membrane filtration in aerobic granular sludgemembrane bioreactor. J. Membrane Sci. 2008; 304: 24–32 Trinet F., Heim R., Amar D., Chang H.T., Rittmann B.E., Study of biofilm and fluidization of bioparticles in a three-phase fluidized-bed reactor. Water Sci. Technol. 1991; 23: 1347–1354. Tsuneda S., Nagano T., Hoshino T., Ejiri Y., Noda N., Hirata A., Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res.. 2003; 37:4965–4973. Ueda T., Hata K., Kikuoka Y., Seino O., Effects of aeration on suction pressure in a submerged membrane bioreactor, Water Res. 1997; 31:489–494 Wang F., Yang F., Zhang X.W., Liu Y., Zhang H., Zhou J., Effects of cycle time on properties of aerobic granules in sequencing batch airlift reactors. World J. Microbiol. Biotechnol. 2005; 21:1379–1384 Wang Z.W., Li Y., Zhou J.Q., Liu Y., The influence of short-term starvation on aerobic granules. Process Biochem. 2006; 41:2373–2378. Wang S.G., Liu X.W., Gong W.X., Gao B.Y., Zhang D.H., Yu H.Q., Aerobic granulation with brewery wastewater in a sequencing batch reactor. Bioresour. Technol. 2007; 98:2142–2147. Wang S.G., Liu X.W., Zhang H.Y., Gong W.X., Aerobic granulation for 2,4-dichlorophenol biodegradation in a sequencing batch reactor. Chemosphere 2007b; 69:769–775. Wang X.H., Zhang H.M., Yang F.L., Xia L.P., Gao M.M., Improved stability and performance of aerobic granules under stepwise increased selection pressure. Enzyme Microbiol. Technol. 2007c; 41:205–211. Wilen B.M., Onuki M., Hermansson M., Lumley D., Mino T., Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability. Water Res. 2007; 42:2300-2308 Williams J.C., de los Reyes III F.L., Microbial community structure of activated sludge during aerobic granulation in an annular gap bioreactor. Water Sci. Technol. 2006; 54: 139–146. Wuertz S., Okabe S., Hausner M., Microbial communities and their interactions in biofilm systems: an overview. Water Sci. Technol. 2004; 49:327–336. Xie S., Metabolic response of aerobic granules to chromium(III). Final year report of Bachelor of Engineering. Singapore: Nanyang Technological University; 2003. Yamamoto K., Hiasa M., Mahmood T., Matsuo T., Direct solid–liquid separation using hollow fiber membrane in an activated-sludge aeration tank, Water Sci. Technol. 21 1989; 21:43–54. Yang S.F., Liu Y., Tay J.H., A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. J. Biotechnol. 2003; 106:77–86 Yang S.F., Tay J.H., Liu Y., Inhibition of free ammonia to the formation of aerobic granules. Biochem. Eng. J. 2004; 17:41–48. Yang S.F., Li X.Y., Yu H.Q., Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions. Process Biochem. 2008; 43:8–14 Yi S., Tay J.H., Maszenan A.M., Tay S.T.L., A culture-independent approach for studying microbial diversity in aerobic granules. Water. Sci. Technol. 2003; 47:283–290 Yi S., Zhuang W.Q., Wu B., Tay S.T., Tay J.H., Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor. Environ. Sci. Technol. 2006; 40:2396−2401. Zhang J., Chua H.C., Zhou J., Fane A.G., Factors affecting the membrane performance in submerged MBR, J. Membr. Sci.,2006; 284:54-66 Zhang L.L., Chen J.M., Fang F., Biodegradation of methyl t-butyl ether by aerobic granules under a cosubstrate condition. Appl. Microbiol. Biotechnol. 2008; 78:543–550. Zheng Y.M., Yu H.Q., Sheng G.P., Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor. Process Biochem. 2005; 40:645–650 Zita A., Hermansson M., Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ. FEMS Microbiol. Lett. 1997; 18:299−306 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45955 | - |
dc.description.abstract | 好氧顆粒是結構緊實的生物聚集體,具有良好的沉降性,並且具有處理高強度有機污水和毒性污水的能力。由低氨鹽和低磷酸鹽的培養基培養出的好氧顆粒,在連續式反應器中運作三天即失去好氧顆粒之結構穩定性。相反的,以培養基具有高濃度的氨鹽所培養的好氧顆粒能夠在連續式薄膜生物反應器中穩定運行210天。以掃描式電子顯微鏡元素分析以及雷射掃描式共軛焦顯微鏡觀察好氧顆粒內部有大量鈣與鐵的沉澱物,以Visual MINTEQ 計算顯示磷酸鹽和氫氧化物是好氧顆粒內部沉澱物的主要物質。
好氧顆粒薄膜生物反應器在經過長期的穩定操作後,發現薄膜內部形成生物膜。從好氧顆粒薄膜生物反應器中取得好氧顆粒、外部積垢層和薄膜內部生物膜分離菌種,並分析菌種分布、尺寸大小、表面電位和生長行為,另外測量菌種在不同有機負荷下分泌胞外聚合物質的濃度。從分離菌種中挑出可能穿過微過濾膜的三株菌,其親緣關係分別近似於Ralstonia mannitolilytica strain SDV、Arthrobacter sp. BJQ-2和Actinobacterium DS3。三株菌種中只有Arthrobacter sp.會形成內部生物膜。由於Arthrobacter sp.的長度較短於其他兩株菌,所以Arthrobacter sp.通過薄膜孔洞結構時受到較小的阻力,因此提高Arthrobacter sp.在薄膜內部表面形成生物膜的能力。 | zh_TW |
dc.description.abstract | Aerobic granules are compact, strong microbial aggregates that have excellent settling ability and capability to efficiently treat high-strength and toxic wastewaters. The aerobic granules cultivated with low ammonium and phosphates lost structural stability within 3 days in continuous-flow reactors. Conversely, stable aerobic granules were cultivated in substrate with high levels of ammonium salts that could stably exist for 210 days in continuous-flow membrane bioreactors. The scanning electron microscopy, energy dispersive spectroscopy microanalysis and the confocal laser scanning microscopy imaging detected large amounts of calcium and iron precipitates in granule interiors. The Visual MINTEQ version 2.61 calculation showed that the phosphates and hydroxides were the main species in the precipitate.
Internal biofilm was observed in the long-term operating AGMBR system. This study isolated strains in aerobic granule, the surface fouling layer, and biofilm inside hollow-fiber membranes of an aerobic granule membrane bioreactor; analyzed their distributions, sizes, surface charges, and growth behaviors; and determined the quantities of extracellular polymeric substances (EPS) secreted by these strains under different organic loadings. Three strains, which may penetrate the microfiltration membranes, were close relatives of the Ralstonia mannitolilytica strain SDV, Arthrobacter sp. BJQ-2, and Actinobacterium DS3. Among these three strains, only Arthrobacter sp. developed an internal biofilm. The relatively short length of Arthrobacter sp. minimizes resistance to cells moving through the membrane matrix, thereby enhancing its ability to build a biofilm in the interior surface of membranes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:49:45Z (GMT). No. of bitstreams: 1 ntu-99-D93524020-1.pdf: 7973537 bytes, checksum: 9c8571107af3f73a362d0f081890fb70 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 謝辭.................................I
摘要................................II Abstract...............................III 目錄................................IV 圖目錄...............................VI 表目錄...............................IX 第一章 前言.............................1 第二章 文獻回顧...........................2 2.1 薄膜生物反應器........................2 2.1.1 影響薄膜積垢的參數....................2 2.1.1.1 薄膜模組的特性.....................2 2.1.1.2 反應器中生物體的特性..................3 2.1.1.3 MBR的操作參數.....................4 2.2 好氧顆粒...........................4 2.2.1顆粒形成.........................5 2.2.1.1初始污泥的菌相.....................6 2.2.1.2進料組成........................6 2.2.1.3連續批式反應器的操作..................6 2.2.2顆粒的特性........................7 2.2.2.1顆粒的物理特性....................7 2.2.2.2顆粒的化學特性.....................7 2.2.2.3顆粒的生物特性.....................8 2.2.3顆粒應用.........................8 2.2.3.1處理毒性有機汙水....................8 2.2.3.2水中氮磷的移除.....................9 2.2.4汙泥顆粒化的機制.....................9 2.2.4.1汙泥顆粒化的步驟....................9 2.2.4.2環境壓力選擇性假說...................10 2.2.4.3 EPS促使汙泥顆粒化...................10 2.2.4.4汙泥顆粒化模型.....................11 2.3好氧顆粒薄膜生物反應器...................11 第三章 實驗設備與方法.......................11 3.1好氧顆粒的培養過程......................12 3.2好氧顆粒薄膜生物反應器的設置與操作..............12 3.2.1好氧顆粒薄膜生物反應器的設置...............12 3.2.2好氧顆粒薄膜生物反應器的操作參數.............13 3.3實驗操作與分析樣品的前處理..................14 3.4分析儀器...........................17 3.5分析操作...........................18 第四章 結果與討論..........................21 4.1 AGMBR處理合成汙水的表現.................21 4.2好氧顆粒在薄膜生物反應器中長時間操作下的演變........30 4.3 AGMBR中增加好氧顆粒穩定性的可能性............35 4.4 AGMBR應用於處理真實都市汙水...............38 4.5 AGMBR薄膜模組之外部生物結垢...............39 4.6 AGMBR薄膜模組之內部生物結垢...............41 4.7 AGMBR薄膜模組反洗與結垢的關係..............44 4.8 薄膜生物積垢的探討.....................53 4.9 內部生物積垢的成因探討...................60 第五章 結論............................65 第六章 參考文獻...........................66 | |
dc.language.iso | zh-TW | |
dc.title | 好氧顆粒薄膜生物反應器的好氧顆粒穩定性及薄膜積垢探討 | zh_TW |
dc.title | Stability of Aerobic Granule and Membrane Fouling in Aerobic Granule Membrane Bioreactor (AGMBR) | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 周志雄,劉志成,黃志彬,張嘉修,徐治平,蔡偉博 | |
dc.subject.keyword | 好氧顆粒,雷射掃描式共軛焦顯微鏡,好氧顆粒薄膜生物反應器,薄膜內部生物膜,Arthrobacter sp., | zh_TW |
dc.subject.keyword | Aerobic granule,Confocal laser scanning microscopy,aerobic granule membrane bioreactor,Internal biofilm,Arthrobacter sp., | en |
dc.relation.page | 82 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 7.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。