請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45921
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李文宗(Wen-Chung Lee) | |
dc.contributor.author | Shu-Fen Liao | en |
dc.contributor.author | 廖淑芬 | zh_TW |
dc.date.accessioned | 2021-06-15T04:48:55Z | - |
dc.date.available | 2010-09-09 | |
dc.date.copyright | 2010-09-09 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-03 | |
dc.identifier.citation | 1. Serfling RJ ed. Approximation theorems of mathematical statistics. London, United Kingdom: John Wiley and Sons, 1980.
2. Newman SC ed. Biostatistical Methods in Epidemiology. New York: Wiley, 2001. 3. Miettinen OS. Confounding and effect-modification. Am J Epidemiol 1974;100:350-3. 4. Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci 1999;14:29-46. 5. Robins JM. Data, design, and background knowledge in etiologic inference. Epidemiology 2001;12:313-20. 6. Rothman KJ. Synergy and antagonism in cause-effect relationships. Am J Epidemiol 1974;99:385-8. 7. Rothman KJ. Causes. Am J Epidemiol 1976;104:587-92. 8. Rothman KJ, Greenland S, Lash TL eds. Modern Epidemiology. Philadephia, PA: LIPPINCOTT WILLIAMS & WILKINS, 2008. 9. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology 1999;10:37-48. 10. Rothman KJ, Greenland S, Walker AM. Concept of interaction. Am J Epidemiol 1980;112:467-70. 11. Thompson WD. Effect modification and the limits of biological inference from epidemiologic data. J Clin Epidemiol 1991;44:221-32. 12. Walter SD. Prevention for multifactorial diseases. Am J Epidemiol 1980;112:409-16. 13. Poole C. Commentary: positivized epidemiology and the model of sufficient and component causes. Intl J Epidemiology 2001;30:707-9. 14. Greenland S. Causal analysis in the health sciences. J Am Statist Assoc 2000;95:286-89. 15. Parascandola M, Weed DL. Causation in epidemiology. J Epidemiol Community Health 2001;55:905-12. 16. Greenland S, Brumback B. An overview of relations among causal modelling methods. Intl J Epidemiology 2002;31:1030-7. 17. Hoffmann K, Heidemann C, Weikert C, et al. Estimating the proportion of diseade due to classes of sufficient causes. Am J Epidemiol 2006;163:76-83. 18. Whittemore AS. Statistical methods for estimating attributable risk from retrospective data. Stat Med 1982;1:229-43. 19. Whittemore AS. Estimating attributable risk from case-control studies. Am J Epidemiol 1983;117:76-85. 20. Bruzzi P, Green SB, Byar DP. Estimating the attrbutable risk for multiple risk factors using case-control data. Am J Epidemiol 1985;122:904-14. 21. Greenland S, Robins JM. Conceptual problems in the definition and interpretation of attributable fractions. Am J Epidemiol 1988;128:1185-97. 22. Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Epidemiol 2005;95:S144-50. 23. Skrondal A. Interaction as departure from additivity in case-control studies: a cautionary note. Am J Epidemiol 2003;158:251-8. 24. Miettinen OS. Stratification by a multivariate confounder score. Am J Epidemiol 1976;104:609-20. 25. Cox JLA. A new measure of attributable risk for public health application. Manage Sci 1985;31:800-13. 26. Miettinen OS. Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol 1974;99:325-32. 27. Hoffmann K, Flanders WD. Re:'estimating the proportion of disease due to classes of sufficient causes'. Am J Epidemiol 2006;164:1253-5. 28. Rabe C, Gefeller O. The attributable risk in a multifactorial situation. Methods Inf Med 2006;45:404-8. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45921 | - |
dc.description.abstract | Rothman提出的因果圓派模式(causal-pie model)是流行病學家非常熟悉的流行病學方法。每一個因果圓派(causal pie)以一系列的組成因子(component cause)組成而成,只要集合所有因果圓派內的組成因子,就意味著疾病的必然產生。因此,在疾病的成因探討上,利用此因果圓派模式能夠同時考慮多因子作用且釐清所有可能危險因子對於疾病錯綜複雜的共同作用。然而,此模式一直以來只是一個概念示意圖,並未真正被應用在實證資料的分析。直到Hoffmann等人在2006年提出相關因果圓派分析方法,但該方法卻有重大缺失。有鑑於此,本研究即著手發展統計方法進行因果圓派的建構。
本研究建立一個因果圓派量化指標,稱其為因果圓派權重(causal-pie weight; CPW)。由於Rothman所提出的因果圓派模式中指出,各組成因子應皆為危險因子且各組成因子間的交互作用假定為加成性及協同性(additive and synergistic),為了符合該假設,我們採用非負係數加成性迴歸模式來進行危險性的估計,並計算族群可歸因危險性(population attributable risk; PAF)。因果圓派權重可成功的經由可歸因危險性矩陣方程式求得,另採用拔靴法(bootstrap)即可估計其信賴區間。 為使此因果圓派模式分析的概念能夠有較為廣泛的應用,本研究探討相關之方法學議題,包括:(1) 二等級或多等級危險因子之因果圓派分析方法;(2) 探討適用於不同研究設計及資料型態之加成性迴歸模式; (3) 干擾因子的調整以獲得危險指標的不偏估計。 此外,本研究亦與Hoffmann等人所提出的定量因果圓派方法進行比較。我們同時利用兩方法進行一筆虛擬資料的分析,結果發現Hoffmann等人提出之方法不但無法反映資料的真實情況,甚至因果圓派值產生不合常理的負值;而本方法卻沒有此缺失。 我們利用電腦模擬以評估本研究方法的正確性,不論因果圓派權重指標值、信賴區間及危險性估計值(特別是危險勝算比),模擬結果皆與情境真值呈現令人滿意的一致性。 最後,我們真正將此套方法應用在流行病學資料分析上,透過三種不同研究設計的資料形式,包括病例對照研究及世代研究,探討多因子對疾病的作用,建構疾病的因果圓派。同時,實證資料分析亦突顯了因果圓派權重估計值的穩定性。 透過一系列的研究,我們不難發現,因果圓派模式確實能夠發揮其優勢,讓研究者釐清各危險因子對於疾病錯綜複雜的共同作用。 | zh_TW |
dc.description.abstract | Epidemiologists are familiar with Rothman’s model of causal pies. A causal pie contains a combination of component causes and people will inevitably develop disease with the completion of it. Rothman’s causal-pie model helps to clarify the multi-factorial and complex interactive nature in disease causation. However, the model has been more of a theoretical concept than a practical tool of data analysis. Until 2006, Hoffmann et al. proposed a method for calculating the ‘proportion of diseased subjects who develop the disease due to specific classes of causal pies’ (PDCs), based on actual case-control data. However, their method is flawed in various ways. The aim of this study is to develop the statistical methodology for causal-pie modeling. We construct a new index, the ‘causal-pie weights’ (CPWs). The CPWs serve to quantify the relative importance of each and every class of causal pies. To be conforming to Rothman’s model, a nonnegative additive model is used to constrain all the risk ratios to be equal to or greater than one, and the interactions between them to be additive or supra-additive. Based on these constrained risk estimations, we then calculate the population attributable fractions (PAFs). The CPWs can then be calculated from the PAFs using a matrix equation. To calculate the confidence intervals of CPWs, the bootstrap technique is applied.
A number of issues related to causal-pie modeling is introduced here to give the methodology a more extensive application, such as (1) developing methods specific for dichotomous or for polytomous risk factors; (2) using various additive regression model for pure-count or person-time data; (3) adjusting confounding effects to acquire the unbiased risk estimates. Besides, the methods proposed by us and by Hoffmann et al. are compared in the study using a hypothetical data. CPWs and PDCs are then calculated. And we find that the association between exposure and disease will be mistakenly claimed and the PDC value will be negative, which is clearly inadmissible in Rothman’s causal-pie model. We conduct computer simulation to evaluate the validity of the procedure for constructing causal pies, in which simulated risk estimates, especially for OR, CPW, and confidence interval are calculated. It is satisfied that the comparable results between simulation and the scenario are acquired. In the last part of the study, we try to apply our causal-pie modeling technique to analyze epidemiological data, including case-control and cohort data. Through a series of studies, we conclude that the methodology for causal-pie modeling can indeed help researchers to clarify the multi-factorial and complex interactive nature in disease causation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:48:55Z (GMT). No. of bitstreams: 1 ntu-99-F93842013-1.pdf: 81421194 bytes, checksum: 2a1c09f330d10fdaf6fb7449ff0739ef (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 中文摘要……………………………………………………………..……. i
英文摘要…………………………………………………………….…….iii 第一章 前言.…………………………………………………………..... 1 第二章 研究方法與結果………………………………………….……. 5 建構因果圓派……………………………….............................…….. 5 單調性假設………………………………………………………... 5 加成性迴歸模式—病例對照研究分析方法………………………….. 6 加成性迴歸模式—世代研究分析方法……...……………………….. 7 加成性迴歸模式—干擾因子的調整……...…………………...…….. 8 族群可歸因危險性……...…………………………………………. 8 因果圓派權重指標……...………………………………………..... 9 暴露之劑量效應與閾值分析—多等級變項的因果圓派建構……........ 11 因果圓派權重的95%信賴區間……...…………………………….. 13 Hoffmann 法的謬誤………………………………….……..……… 14 第三章 電腦模擬………………………………...…………………… 20 第四章 實證資料分析……………………………………………..…. 25 EPIC-Potsdam 研究建構心肌梗塞之因果圓派……………….….. 25 台灣社區癌症篩檢計畫建構子宮頸癌之因果圓派.........................26 台灣社區癌症篩檢計畫建構肝細胞癌之因果圓派……………… 27 第五章 討論…………………………………………………………... 33 第六章 結論…………………………………………………………... 37 參考文獻…………………………………………………………….….. 38 附錄……………………………………………………………..………. 41 | |
dc.language.iso | zh-TW | |
dc.title | 利用流行病學資料建構因果圓派 | zh_TW |
dc.title | Constructing Causal Pies Using Epidemiological Data | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 陳建仁(Chien-Jen Chen) | |
dc.contributor.oralexamcommittee | 陳珍信(Chen-Hsin Chen),蕭朱杏(Chu-Hsing Kate Hsiao),方啟泰(Chi-Tai Fang),洪弘(Hung Hung) | |
dc.subject.keyword | 因果圓派模式,因果圓派,加成性迴歸模式,交互作用,族群可歸因危險性, | zh_TW |
dc.subject.keyword | causal-pie model,causal pie,additive regression model,interaction,population attributable fraction, | en |
dc.relation.page | 41 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-03 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學研究所 | zh_TW |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 79.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。