請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45918完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂良正 | |
| dc.contributor.author | Chi-Han Lu | en |
| dc.contributor.author | 呂其翰 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:48:50Z | - |
| dc.date.available | 2011-08-06 | |
| dc.date.copyright | 2010-08-06 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-02 | |
| dc.identifier.citation | ABAQUS Version 6.10, Dassault Systèmes Simulia Corp.(2010), Providence, RI, USA.
Almeida, S. R. M., Paulino, G. H. and Silva, E. C. N. (2009), “A simple and effective inverse projection scheme for void distribution control in topology optimization,” Structural and Multidisciplinary Optimization, Vol. 39, pp. 359-371. Arora, J.S.(1989), Introduction to Optimum Design, McGraw-Hill, Singapore. Balamurugan, R., Ramakrishnan, C.V. and Swaminathan, N.(2006), “Integrated Op-timal Design of Structures Under Multiple Loads for Topology and Shape Using Ge-netic Algorithm,” International Journal for Computer-Aided Engineering and Software, Vol. 23, No. 1, pp. 57-83. Bendsøe, M. P., Díaz, A. R., Lipton, R. and Taylor, J. E.(1995), “Optimal design of material properties and material distribution for multiple loading conditions,” Interna-tional Journal for Numerical Methods in Engineering, Vol. 38, No. 8, pp. 1149-1170. Bendsøe, M. P., Sigmund, O.(1999), “Material interpolation schemes in topology optimization,” Archive of Applied Mechanics, Vol. 69, pp. 635-654. Buhl, T.(2001), “Simultaneous Topology Optimization of Structure and Supports,” Structural and Multidisciplinary Optimization, Vol.23, pp. 336-346. Guan, H., Chen, Y. J., Loo, Y. C., Xie, Y. M. and Steven G. P.(2003), “Bridge To-pology Optimization with Stress, Displacement and Frequency Constraints,” Computers and Structures, Vol.81, No.3, pp.131-145. Guest, J. K., Prévost, J. H. and Belytschko, T.(2004), ” Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” International Journal for Numerical Methods in Engineering, Vol. 61, pp. 238-254. Han, S. Y. and Lee, S. K.(2005), “Development of A Material Mixing Method Based on Evolutionary Structural Optimization,” JSME International Journal, Vol. 48, No.3, pp. 132-135. Huang, X. and Xie, Y. M.(2007), “A New Look at ESO and BESO Optimization Methods”, Structural and Multidisciplinary Optimization, Vol. 35, pp. 89-92. Huang, X. and Xie, Y. M.(2007), “Convergent and Mesh-independent Solutions for The Bi-directional Evolutionary Structural Optimization Method,” Finite Elements in Analysis and Design, Vol.43, pp. 1039-1049. Huang, X. and Xie, Y. M.(2010), “A Further Review of ESO Type Methods for To-pology Optimization,” Structural and Multidisciplinary Optimization, Vol.41, pp. 671-683. IMSL C Numerical Library(2003), Visual Numerics®. Jang, G.-W., Shim, H.S. and Kim, Y.Y. (2009), “Optimization of Support Locations of Beam and Plate Structures Under Self-Weight by Using a Sprung Structure Model,” Journal of Mechanical Design, Vol.131 Lawrence, C., Zhou, J. L. and Tits, A. L.(1997), User’s Guide for CFSQP Version 2.5. Li, Q., Steven, G.P. and Xie, Y.M.(2001), “A Simple Checkerboard Suppression Algorithm for Evolutionary Structural Optimization,” Structural and Multidisciplinary Optimization, Vol. 22, pp. 230-239. Liang, Q. Q., Xie, Y. M. and Steven, G. P.(2000), “Optimal Topology Selection of Continuum Structures with Displacement Constraints,” Computers and Structures, Vol.77, pp. 635-644. Mei, Y. and Wang X.(2004), “A Level Set Method for Structural Topology Optimi-zation and Its Applications,” Advances in Engineering Software, Vol.35, pp. 415-441. Querin, O. M. and Steven, G. P.(1998), “Evolutionary Structural Optimisation Using a Bidirectional Algorithm,” Engineering Computations, Vol. 15, No. 8, pp. 1031-1048. Querin, O. M., Young, V., Steven, G. P. and Xie, Y. M.(2000), “Computational Ef-ficiency and Validation of Bi-directional Evolutionary Structural Optimisation,” Com-puter Methods in Applied Mechanics and Engineering, Vol. 189, pp. 559-573. Venkayya, V. B.(1993), “Structural Optimization: Status and Promise,” AIAA Series: Progress in Aeronautics and Astronautics, Vol. 150, AIAA, Washington D. C. Wang, M. Y., Chen, S., Wang, X. and Mei, Y.(2005), “Design of Multimaterial Compliant Mechanisms Using Level-set Methods,” Journal of Mechanical Design, Vol. 127, pp. 941-956. Wang, M. Y. and Wang, X.(2004), “”Color” Level Sets: a Multi-phase Method for Structural Topology Optimization with Multiple Materials,” Computer Methods in Ap-plied Mechanics and Engineering, Vol. 193, pp. 469-496. Wang, M. Y., Wang, X. and Guo, D.(2003), “A Level Set Method for Structural Topology Optimization,” Computer Methods in Applied Mechanics and Engineering, Vol. 192, pp. 227-246. Yang X. Y., Xie, Y. M., Steven G. P. and Querin, O. M.(1999), “Bidurectional Evo-lutionay Method for Stiffness Optimization,” AIAA Journal, Vol. 37, No. 11, pp. 1483-1488. Zhou, M., Shyy, Y. K. and Thomas, M. L.(2001), “Checkerboard and Minimum Member Size Control in Topology Optimization,” Structural and Multidisciplinary Op-timization, Vol. 21, pp. 152-158. Zhou, S. and Wang, M. Y.(2007), “Multimaterial Structural Topology Optimization with a Generalized Cahn-Hilliard Model of Multiphase Transition,” Structural and Multidisciplinary Optimization, Vol. 33, pp. 89-111. Structurae, http://en.structurae.de/ 黃仲偉(1996),折減法在結構最佳化及非線性分析之應用,國立台灣大學土木工程學研究所碩士論文。 黃仲偉(2003),結合拓樸最佳化之壓拉桿模型理論與軟體開發,國立台灣大學土木工程學研究所博士論文。 李宗豪(2005),以有限元素套裝軟體為分析引擎之最佳化設計系統架構開發,國立台灣大學土木工程學研究所碩士論文。 蘇穎香(2006),應用最佳化設計系統於板、殼結構,國立台灣大學土木工程學研究所碩士論文。 康銘展(2007),整合有限元素商業軟體於最佳化設計系統及其應用,國立台灣大學土木工程學研究所碩士論文。 宋明倫(2007),結合尺寸最佳化及考慮拉壓強度不同之拓樸最佳化,國立台灣大學土木工程學研究所碩士論文 張容慈(2008),結合拓樸、尺寸及形狀最佳化之橋樑設計,國立台灣大學土木工程學研究所碩士論文。 施宏璋(2008),交換式最佳演進法於多材料之結構拓樸最佳化設計,中原大學土木工程研究所碩士論文。 徐千泰(2009),多重材料配置及支承位置最佳化之橋梁結構設計,國立台灣大學土木工程學研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45918 | - |
| dc.description.abstract | 本研究擴展李宗豪所開發的最佳化設計系統(李宗豪2005)作為最佳化設計工具。研究內容著重於結構最佳化中的拓樸最佳化,主要可以分為「雙向結構最佳化演進法」與「多重材料拓樸最佳化」兩個部分。
在本研究團隊相關的研究中,拓樸最佳化的部分,主要使用結構最佳化演進法(Evolutionary Structural Optimization,Xie et al. 1993),相較於其他一般常見的拓樸最佳化方法,本方法使用離散設計變數0與1,非其他方法之連續設計變數,因此在最終拓樸結果可以輕鬆界定材料範圍;並且本方法流程簡單、觀念容易,計算時間與負荷亦較其他方法為小,容易於實際工程設計應用。但此方法為單純移除之單向過程,對於許多邊界條件變更等問題可能最終導致失敗。 「雙向結構最佳化演進法」針對前述問題加以改良,以平滑化及投影策略之概念,使結構最佳化演進法除了移除外亦能夠做填回之動作,使方法具有更大之自由程度,並也允許不同的初始設計,不必要以填滿全設計領域做為初始條件,可以減少不少計算時間,並且若將之應用於徐千泰(2009)提出之支承位置最佳化上,可以取得更合理、更優良之最佳化支承位置結果。 篩選半徑為雙向結構最佳化演進法之重要預設參數,本研究提出其決定應首先考量欲設計桿件之尺寸大小,篩選半徑約定於之欲設計桿件寬度之一半大小。若欲對拓樸做初始設計,注意初始設計之桿件寬度大小應避免小於兩倍篩選半徑大小,以免造成拓樸破碎失敗之結果,且須注意過大之篩選半徑可能產生不良之拓樸結果。 本研究亦將雙向結構最佳化演進法加以變更與討論,融合反式投影策略達到控制拓樸桿件尺寸之目的,具有相當之效果,惟其結果與使用較大篩選半徑之拓樸相似,使用時可考慮以原始之雙向結構最佳化演進法使用較大之篩選半徑代替反式投影策略中繁複之計算及判斷;本研究亦將原雙向結構最佳化演進法原先繁複之計算流程加以簡化,成為簡易式雙向結構最佳化演進法,經實例比較,其方法與原雙向結構最佳化演進法所得之拓樸略有不同但大致相似,而於原雙向結構最佳化演進法之各特點亦可達到相當之結果。 「多重材料拓樸最佳化」的部分,本研究以結構最佳化演進法之相關方法為主軸,主要針對施宏璋(2008)與徐千泰(2009)之研究內容與成果及多重材料的集中化處理加以探討、比較。於雙重材料於軟材料為起始條件之拓樸問題,本研究提出可以兩段式交換收斂、平滑化處理與移除比例方法之相互配合,達到一個較為穩定之結果;而對於多重材料拓樸之演進方法,本研究亦加以比較探討,於演進方法上,不宜先決定硬材料之配置,以免造成過度差異之拓樸,而於研究考量之方法中,徐千泰(2009)提出逐漸將材料降階變軟之方法所得之結果略優於其他方法;最後在材料的集中化處理部分,本研究使用材料介面長度加入最佳化目標函數中,確實可有效形成材料集中化之效果。 | zh_TW |
| dc.description.abstract | This research expands and uses the optimization design system developed by Lee (2005) to carry out optimizations. It focuses on the topology optimization and takes two parts: “Bi-directional Evolutionary Optimization” and “Multi-material Topology.”
In researches of our reseach group, we majorly use Evolutionary Structural Opti-mization method (Xie et al. 1993) on topology optimizations. The ESO method uses discrete design variables 0 or 1, so it easier ditiguish the material and the void than other methods with continuous design variable. And it’s simpler, easier and more time effi-cient. But because of its simple procedure with only removing elements, it may fail in some boundary condition changed cases. The “Bi-directional Evolutionary Structural Optimization” method is so developed. The method allows filling back elements with combing the concept of smoothing and projection, so it has more freedom than the original method. It also has allowance in ini-tial design to decrease the comsuming time of the optimization, and when applying it on optimization of support positions published by Hsu (2009), the result will be better than the former research and fit with the paper results. The filtering radius is the most important parameter in BESO method. This research makes lots of discussions about it by examples and suggests that it should be set about half of the desired member size you want, and if the initial design exists, the member width should be larger than twice the filtering redius to avoid crashing. And too large filtering radius may cause bad topology, check in smaller radius if you feel it bad. This research also tries to make modifications on the BESO method. First try is combing it with the inverse projection scheme to control the member and the void size. The try is successful control the member size. But the result goes similar with the to-pology with a larger filtering radius and the original BESO method. It may be more discussions about using it or not. Another try is to simplify the complex computions and procedures of the BESO method. The results of the simplified method make only a little difference with results of the original BESO method, and the method can work in BESO features. In part of “Multi-material Topology,” this research works on ESO based methods and focuses on the researches of Shih (2008) and Hsu (2009). First, in two-material to-pology problem with initial condition of soft material in the full design domain, the combination of two-step converging, smoothing technique and the rejection ratio meth-od can make more stable results. Second, in part of the evolutionary method in multiple materials, this research finds that the method with earlier decisidng on distribution of harder material will cause worse topology, and in all methods this research compared, Hsu’s Method makes better results. Last, this research takes the material interface length into the objective function and it can make clearly material concentrated topology. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:48:50Z (GMT). No. of bitstreams: 1 ntu-99-R97521209-1.pdf: 10020234 bytes, checksum: 2460624c54a8fccba642d6d04f351a7e (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘 要 i
目 錄 v 表 目 錄 ix 圖 目 錄 xi 第一章 緒論 1 1.1 研究動機、背景 1 1.2 文獻回顧 1 1.2.1 最佳化系統設計 2 1.2.2 結構最佳化問題 3 1.3 研究目的 4 1.4 研究內容 5 第二章 結構最佳化系統介紹 7 2.1 前言 7 2.2 最佳化問題描述 7 2.3 結構最佳化分析方法與工具介紹 9 2.3.1 結構最佳化演進法(Evolutionary Structural Optimization,ESO) 10 2.3.2 數學規劃法(Mathematical Programming,MP) 12 2.3.3 有限元素套裝軟體(ABAQUS) 15 2.4 結構最佳化系統架構介紹 16 2.4.1 最佳化設計模組 17 2.4.2 有限元素分析模組 18 2.4.3 資料處理模組 19 2.4.4 有限元素模型更新模組 20 2.4.5 函數計算模組 20 2.4.6 使用者介面說明 21 2.5 小結 22 第三章 結構最佳化演進法 27 3.1 前言 27 3.2移除準則 27 3.2.1 能量移除準則 27 3.2.2 應力移除準則 28 3.3 方法探討 30 3.4 小結 32 第四章 雙向結構最佳化演進法 35 4.1 前言 35 4.2 相關文獻與概念 35 4.2.1 平滑化處理 36 4.2.2 投影策略 36 4.3 雙向結構最佳化演進法 37 4.3.1元素與節點之敏感度因子計算 38 4.3.2 篩選投影 38 4.3.3 穩定策略 39 4.3.4 收斂停止條件 39 4.3.5 方法流程 40 4.4 移除準則 41 4.4.1 一般性原則 41 4.4.2 固定數量方法 43 4.4.3 固定體積比例方法 44 4.4.4 移除比例方法 44 4.5 雙向結構最佳化演進法應用 46 4.5.1 桿件清晰化 46 4.5.2 初始設計之選擇 47 4.5.2 於支承位置最佳化之應用 48 4.6 小結 50 第五章 雙向結構最佳化演進法相關探討 61 5.1 前言 61 5.2 反式投影策略之應用 61 5.2.1 反式投影策略 61 5.2.2 應用反式投影策略於BESO方法 62 5.2.3 結果與討論 65 5.3 簡易式雙向結構最佳化演進法 67 5.3.1 簡化概念 68 5.3.2 方法流程 68 5.3.3 權重比較 69 5.3.4 實例結果 70 5.4 篩選半徑之選取 71 5.5 小結 73 第六章 多重材料拓樸最佳化 93 6.1 前言 93 6.2 多重材料相關文獻回顧 93 6.2.1 Cahn-Hilliard方法 94 6.2.2 Level-set方法 96 6.2.3 ESO相關方法 99 6.3 材料交換之敏感度分析 100 6.3.1 敏感度因子 100 6.3.2 敏感度估計與實際變更之比較 102 6.4 雙重材料拓樸問題 103 6.4.1 兩段式交換收斂 103 6.4.2 平滑化技巧之使用 104 6.4.3 單次演進數量之差異 105 6.5 多重材料演進方法探討 108 6.5.1 演進方法介紹 108 6.5.2 演進方法比較與討論 109 6.6 多重材料之集中化處理 111 6.6.1 適應性問題描述及敏感度因子 111 6.6.2 演進方法適用性 112 6.7 小結 114 第七章 結論與未來展望 141 7.1 結論 141 7.2 未來展望 144 參 考 文 獻 147 | |
| dc.language.iso | zh-TW | |
| dc.subject | 結構最佳化 | zh_TW |
| dc.subject | 多重材料拓樸 | zh_TW |
| dc.subject | 雙向結構最佳化演進法 | zh_TW |
| dc.subject | 拓樸最佳化 | zh_TW |
| dc.subject | Structural Optimization | en |
| dc.subject | Topology Optimization | en |
| dc.subject | Bi-directional Evolutionary Optimization | en |
| dc.subject | Multi-material Topology | en |
| dc.title | 雙向結構最佳化演進法及多重材料拓樸最佳化之探討 | zh_TW |
| dc.title | Investigation of Bi-directional Evolutionary Structural Optimization and Multiple Material Topology Optimization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭世榮,宋裕祺,黃仲偉 | |
| dc.subject.keyword | 結構最佳化,拓樸最佳化,雙向結構最佳化演進法,多重材料拓樸, | zh_TW |
| dc.subject.keyword | Structural Optimization,Topology Optimization,Bi-directional Evolutionary Optimization,Multi-material Topology, | en |
| dc.relation.page | 151 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 9.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
