Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45910
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor顏家鈺(Jia-Yush Yen)
dc.contributor.authorBo-Ru Chenen
dc.contributor.author陳柏儒zh_TW
dc.date.accessioned2021-06-15T04:48:39Z-
dc.date.available2015-08-05
dc.date.copyright2010-08-05
dc.date.issued2010
dc.date.submitted2010-08-03
dc.identifier.citation[1] Miller, K. S. and Ross, B., “An Introduction to the Fractional Calculus and Fractional Differential Equations”, Wiley, New York 1993.
[2] Oldham, K. B. and Spanier, J., “The Fractional Calculus”, Academic Press, New York, 1974.
[3] Podlubny, I., “Fractional-order systems and fractional-order controllers”, Technical Report UEF-03-94, Slovak Academy of Sciences. Institute of Experimental Physics, Department of Control Engineering. Faculty of Mining, University of Technology, Kosice, Slovak Republic, November 1994.
[4] Samko, S. G., Kilbas, A. A., and Marchev, O. I., “Fractional Integrals and Derivatives and Some of Their Applications”, Nauka I Technika, Minsk, Russia, 1987.
[5] Shantanu Das, “Functional Fractional Calculus for System Identification and Controls”, ISBN 978-3-540-72702-6 Springer Berlin Heideberg New York.
[6] Lurie, Boris J., “Three-parameter tunable tilt-integral-derivative(TID) controller”, US Patent US5371670, 1994.
[7] Oustaloup, A., Mathieu, B., and Lanusse, P., “The CRONE control of resonant plants: Application to a flexible transmission”, European Journal of Control 1(2), 1995, pp. 113-121.
[8] Oustaloup, A., Moreau, X., and Nouillant, M., “The CRONE suspension”, Control Engineering Practice 4(8), 1996, 1101-1108.
[9] Podlubny, I., “Fractional-order systems and -Controllers”, IEEE Transsactions Automatic Control 44(1), 1999, 208-214.
[10] Ivo Petráŝ, “The fractional-order controllers: Methods for their synthesis and application”, Journal of Electrical Engineering 50(9-10), 1999, 284-288.
[11] Oustaloup, A., Levron, F., Nanot, F., and Mathieu, B., “Frequency band complex non integer differentiator: Characterization and synthesis”, IEEE Transactions on Circuits and Systems 1: Fundamental Theory and Applications 47(1), 2000, 25-40.
[12] Oustaloup, A. and Mathieu, B., “La commande CRONE: du scalaire au mulitivariable”, HERMES, Paris, 1999.
[13] Chunna Zhao, D. Xue, and Y. Q. Chen, “A fractional order PID tuning algorithm for a class of fractional order plants,” in Proc. of the ICMA, Niagara, Canada, 2005, pp. 216-221.
[14] D. Xue, Chunna Zhao, and Y. Q. Chen, “Fractional order PID control of a dc-motor with elatic shaft: A case study,” in Proc. of American Control Conference(ACC) 2006, Minnesota, USA, 2006, pp. 3182-3187.
[15] Ziegler, J. G., and N. B. Nichols, “Optimum settings for automatic controllers,” Transactions of the A.S.M.E., pp. 759-768, 1942.
[16] C. A. Monje, B. M. Vinagre, T. Q. Chen, and V. Feliu, “Proposals for fractional -tunning,” in Proceeds of The First IFAC Symposium on Fractional Differentiation and its Applications (FDA04), Bordeaux, France, 2004.
[17] Ying Luo and Y. Q. Chen, “Fractional-order [Proportional Derivative] Controller for Robust Motion Control: Tuning Procedure and Validation,” in Proc. of American Control Conference(ACC) 2009, Hyatt Regency Riverfront, At. Louis, NO, USA, June 10-12, 2009.
[18] Y. Q. Chen, Ivo Petráŝ and D. Xue, “Fractional Order Control – A Tutorial,” in Proc. of American Control Conference (ACC) 2009, Hyatt Regency Riverfront, At. Louis, NO, USA, June 10-12, 2009.
[19] Al-Alaoui, M. A., “Novel digital integrator and differentiator,” Electronics Letters 29(4), 1993, 376-378
[20] Al-Alaoui, M. A., “A class of second-order integrators and low-pass differentiator,” IEEE Transactions on Circuit and Systems: Fundamental Theory and Applications 42(4), 1995, 220-223
[21] Al-Alaoui, M. A., “Filling the gap between the bilinear and the backward difference transforms: An interative design approach,” International Journal of Electrical Engineering Education 34(4), 1997, 331-337.
[22] Tseng, C.-C., “Design of fractional order digital FIR differentiator,” IEEE Signal Processing Letters 8(3), 2001, 77-79
[23] Tseng, C.-C., Pei, S.-C., and Hsia, S.-C., “Computation of fractional derivatives using fourier transform and digital FIR differentiator,” Signal Processing 80, 2000, 151-159.
[24] Ivo Petráŝ, “Fractional-order feedback control of a DC motor,” Journal of electrical engineering, vol. 60, NO. 3, 2009, 117-128
[25] Xi Zhang, Senior Member, ‘Maxflat Fractional Delay IIR Filter Design,” IEEE Transactions on signal processing, vol. 57, NO. 8, August 2009
[26] Arijit Biswas, Swagatam Das, Ajith Abraham, Sambarta Dasgupta, “Design of fractional-order controllers with an improved differential evolution,” Journal of Enginnering Applications of Artificial Intelligence, Elsevier Science, 2009
[27] Concepcion A. Monje, Blas M. Vinagre, Vicente Feliu, Y. Q. Chen, “Tuning and auto-tuning of fractional order controllers for industry applications,” Journal of Control Engineering Practice , Elsevier Science, 2008
[28] Mohamad Adnan AL-Alaoui, Senior Member, “Discretization Methods of Fractional Parallel PID Controllers,” IEEE Transactions on electrical and computer engineering department, 2009
[29] M. Axtell and E. M. Bise: “Fractional Calculus Applications in Control Systems,” .Proc. of the IEEE Nat. Aerospace and Electronics Conf., New York, pp. 563-566, 1990.
[30] R. S. Barbosa, J. A. Tenreiro Machado and I. M. Ferreira, “Tuning of PID controllers based on Bode’s ideal transfer function,” Nonlinear Dynamics, 38:305-321, 2004.
[31] D. Matignon, “Stability result on fractional differential equations with applications to control processing,” IMACS-SMC Proceedings, Lille, France, July 1996, pp. 963-968
[32] Mohamad Adnan Al-Alaoui, “Discretization Methods of Fractional Parallel PID Controllers,” IEEE Electrical and Computer Engineering department, 2009
[33] Dingy¨u and Y. Q. Chen, “A Comparative Introduction of Four Fractional Order Controllers,” Proc. of The 4th IEEE World Congress on Intelligent Control and Automation (WCICA02), June 10-14, 2002, Shanghai, China. pp. 3228-3235.
[34] Y. Q. Chen, Dingyu Xue, and Huifang Dou. “Fractional Calculus and Biomimetic Control,” IEEE Int. Conf. on Robotics and Biomimetics (RoBio04), August 22-25, Shengyang, China. (PDF-robio2004-347)
[35] Y.Q. Chen and K.L. Moore, “Discretization for Fractional Order Differentiators and Integrators,” IEEE Trans. on Circuits and Systems I, vol. 49, pp 363-367, March 2002.
[36] Steven B. Skaar, Anthony N. Michel and Richard k. Miller, “Stability of Viscoelastic Control Systems,” IEEE Transactions on automatic control, vol. 33, April, 1988.
[37] A. Oustaloup, F. Levron, and B. Mathieu, “Frequency-band complex noninteger differentiator: Characterization and synthesis,” IEEE Transactions on Circuits and Systems I, vol. 47, no. 1, pp. 25–39, January 2000.
[38] M. Zamani, M. Karimi-Ghartemani, and N. Sadati, “FOPID controller design for robust performance using particle swarm optimization,” Journal of Fractional Calculus and Applied Analysis (FCAA), vol. 10,no. 2, pp. 169–188, 2007.
[39] Chunna Zhao and Dingy¨u Xue and YangQuan Chen, “A Fractional Order PID Tuning Algorithm for A Class of Fractional Order Plants,” IEEE International Conference on Mechatronics & Automation, Niagara Falls, Canada ,July 2005
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45910-
dc.description.abstract分數階微積分(fractional calculus) 的理論發展至今已有三個世紀之久,但最近這三、四十年才真正發展出適用於工程上的分數階微積分運算方法,本論文主要研究分數階微積分理論在控制器設計上的應用。首先,本文將從分數階系統的特性來開始研究,利用其特性來設計分數階控制器,討論分數階控制器在連續時間的特性、穩定性與強健性,並將控制器以直接離散化與非直接離散化兩種方法來實現分數階控制器,同時搭配不同的演算法,比較這些方法的差異性並找出適合應用在分數階控制器上。最後本文以兩段式紅外線變焦鏡機構為對象,用PIC單晶片微處理機來實現控制器,並依據紅外線變焦鏡機構與感測器特性,設計出切換式控制法則,實際驗證分數階控制器的性能。zh_TW
dc.description.abstractThe theory of fractional calculus has been established for over 300 years. However, the algorithm of fractional calculus was developed in the last 40 years. In this thesis, the fractional-order controllers are designed according to the characteristics of fractional-order systems in continuous time. Then, the stability and robustness of these controllers are discussed. The fractional-order controllers are achieved by direct and indirect discretizations and different algorithms. The research focuses in an application of fractional-order controllers for an infrared zoom lens servo. The implementation of the controllers is accomplished with a microprocessor PIC, which is used to switch the infrared zoom lens. Finally, the performance of fractional-order controller is shown in the experiment results.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:48:39Z (GMT). No. of bitstreams: 1
ntu-99-R97522808-1.pdf: 2383076 bytes, checksum: 7b23e679f2043af5f2e9f67ae5e908a1 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要 VII
Abstract IX
目錄 XI
圖目錄 XIII
表目錄 XVI
第1章 導論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究方法 7
第2章 系統架構 9
2.1 紅外線變焦鏡组之機構 9
2.2 硬體設備 14
2.2.1 DC馬達 15
2.2.2 位置感測器 16
2.2.3 驅動器及微處理器 16
第3章 系統鑑別 19
3.1 系統鑑別流程 20
3.2 建立系統的數學模型 21
3.2.1 馬達系統之轉移函數 21
3.2.2 線性化之方法 23
3.2.3 ARX數學模型 24
3.2.4 系統之數學模型 26
第4章 分數階PID控制器 35
4.1 歷史及定義 35
4.2 控制器的設計 39
4.2.1 控制器性能考慮因素 39
4.2.2 分數階PID五個設計參數對系統的影響 41
4.3 分數階PID的漸近方法、離散化與展開法 52
4.3.1 連續時間的分數階微積分漸近化 52
4.3.2 離散化 54
4.3.3 展開法 55
4.4 直接離散化與非直接離散化的比較 58
4.5 紅外線變焦鏡組的分數階PID設計 60
4.5.1 取得系統的數學模型 60
4.5.2 設計分數階PID 61
4.5.3 離散化分數階PID 71
第5章 實驗結果與討論 79
5.1 實驗結果 79
5.2 實驗結果討論 99
第6章 結論與未來發展 101
6.1 結果與討論 101
6.2 未來發展 102
參考文獻 104
附錄A 109
dc.language.isozh-TW
dc.subject雙視野zh_TW
dc.subject紅外線變焦鏡組zh_TW
dc.subject分數階PID控制器zh_TW
dc.subject絕對定位zh_TW
dc.subjectdual field-of-viewen
dc.subjectabsolute alignmenten
dc.subjectfractional PID controlleren
dc.subjectinfrared zoom lensen
dc.title高性能紅外線變焦鏡組伺服之分數階控制器設計與實現zh_TW
dc.titleFractional Order Controller Design and Implementation for a High Performance Infrared Zoom Lens Servoen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李志法,陳永耀
dc.subject.keyword分數階PID控制器,紅外線變焦鏡組,雙視野,絕對定位,zh_TW
dc.subject.keywordfractional PID controller,infrared zoom lens,dual field-of-view,absolute alignment,en
dc.relation.page110
dc.rights.note有償授權
dc.date.accepted2010-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
2.33 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved