Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4590
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真(Chih-Chen Hsieh)
dc.contributor.authorChih-An Chenen
dc.contributor.author陳致安zh_TW
dc.date.accessioned2021-05-14T17:43:47Z-
dc.date.available2020-09-02
dc.date.available2021-05-14T17:43:47Z-
dc.date.copyright2015-09-02
dc.date.issued2015
dc.date.submitted2015-08-04
dc.identifier.citation1. Zimm, B.H., Extension in Flow of a DNA Molecule Tethered at One End. Macromolecules, 1998. 31(18): p. 6089-6098.
2. Kim, J.M. and P.S. Doyle, A Brownian dynamics-finite element method for simulating DNA electrophoresis in nonhomogeneous electric fields. The Journal of Chemical Physics, 2006. 125(7): p. -.
3. Randall, G.C. and P.S. Doyle, DNA Deformation in Electric Fields:  DNA Driven Past a Cylindrical Obstruction. Macromolecules, 2005. 38(6): p. 2410-2418.
4. Teraoka, I., Models of Polymer Chains, in Polymer Solutions. 2002, John Wiley Sons, Inc. p. 1-67.
5. 黃秋德, 以布朗動態法模擬DNA在微流道中受流場拉伸之研究. 國立台灣大學工學院化學工程學系暨研究所, 2013.
6. 林宗賢, 以布朗動態法模擬與優化電泳拉伸DNA之策略. 國立台灣大學工學院化學工程學系暨研究所, 2011.
7. Dorfman, K.D. and H. Brenner, Convective dispersion without molecular diffusion. Physica A: Statistical Mechanics and its Applications, 2003. 322(0): p. 180-194.
8. Watson, K.D., Flory, Paul John, in eLS. 2001, John Wiley Sons, Ltd.
9. Chan, T., Stochastic processes in polymeric fluids H. C. Öttinger. Springer, Berlin, 1996. pp. 362, price DM98.00. ISBN 3-540-58353-X. Polymer International, 1997. 43(3): p. 290-290.
10. Heller, C., T. Duke, and J.L. Viovy, Electrophoretic mobility of DNA in gels. II. Systematic experimental study in agarose gels. Biopolymers, 1994. 34(2): p. 249-259.
11. Schwartz, D.C. and C.R. Cantor, Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell, 1984. 37(1): p. 67-75.
12. Cantor, C.R., C.L. Smith, and M.K. Mathew, Pulsed-Field Gel Electrophoresis of Very Large DNA Molecules. Annual Review of Biophysics and Biophysical Chemistry, 1988. 17(1): p. 287-304.
13. Anand, R., Pulsed field gle electrophoresis: a technique for fractionating large DNA molecules. Technical focus, 1986. 0168: p. 278-282.
14. Doyle, P.S., et al., Self-Assembled Magnetic Matrices for DNA Separation Chips. Science, 2002. 295(5563): p. 2237-2237.
15. Kaji, N., et al., Separation of Long DNA Molecules by Quartz Nanopillar Chips under a Direct Current Electric Field. Analytical Chemistry, 2003. 76(1): p. 15-22.
16. Cho, J. and K.D. Dorfman, Brownian dynamics simulations of electrophoretic DNA separations in a sparse ordered post array. Journal of Chromatography A, 2010. 1217(34): p. 5522-5528.
17. Ou, J., S.J. Carpenter, and K.D. Dorfman Onset of channeling during DNA electrophoresis in a sparse ordered post array. Biomicrofluidics, 2010. 4, 13203 DOI: 10.1063/1.3283903.
18. Olson, D.W. and K.D. Dorfman, Experimental study of the effect of disorder on DNA dynamics in post arrays during electrophoresis. Physical Review E, 2012. 86(4): p. 041909.
19. Dorfman, K.D., et al., Beyond Gel Electrophoresis: Microfluidic Separations, Fluorescence Burst Analysis, and DNA Stretching. Chemical Reviews, 2012. 113(4): p. 2584-2667.
20. Randall, G.C. and P.S. Doyle, Collision of a DNA Polymer with a Small Obstacle. Macromolecules, 2006. 39(22): p. 7734-7745.
21. Minc, N., J.-L. Viovy, and K.D. Dorfman, Non-Markovian Transport of DNA in Microfluidic Post Arrays. Physical Review Letters, 2005. 94(19): p. 198105.
22. Mohan, A. and P.S. Doyle, Stochastic Modeling and Simulation of DNA Electrophoretic Separation in a Microfluidic Obstacle Array. Macromolecules, 2007. 40(24): p. 8794-8806.
23. Kim, J.M. and P.S. Doyle, Brownian Dynamics Simulations of a DNA Molecule Colliding with a Small Cylindrical Post. Macromolecules, 2007. 40(25): p. 9151-9163.
24. Randall, G.C. and P.S. Doyle, Electrophoretic Collision of a DNA Molecule with an Insulating Post. Physical Review Letters, 2004. 93(5): p. 058102.
25. Larson, R.G., et al., Brownian dynamics simulations of a DNA molecule in an extensional flow field. Journal of Rheology (1978-present), 1999. 43(2): p. 267-304.
26. Minc, N., et al., Motion of single long DNA molecules through arrays of magnetic columns. Electrophoresis, 2005. 26(2): p. 362-375.
27. Olson, D.W., et al., Continuous-time random walk models of DNA electrophoresis in a post array: Part I. Evaluation of existing models. ELECTROPHORESIS, 2011. 32(5): p. 573-580.
28. Dorfman, K.D., DNA electrophoresis in microfluidic post arrays under moderate electric fields. Physical Review E, 2006. 73(6): p. 061922.
29. Dorfman, K.D., Exact computation of the mean velocity, molecular diffusivity, and dispersivity of a particle moving on a periodic lattice. The Journal of Chemical Physics, 2003. 118(18): p. 8428-8436.
30. Gauthier, M.G., G.W. Slater, and K.D. Dorfman, Exact lattice calculations of dispersion coefficients in the presence of external fields and obstacles. The European Physical Journal E, 2004. 15(1): p. 71-82.
31. Olson, D.W., et al., Continuous-Time Random Walk Models of DNA Electrophoresis in a Post Array: II. Mobility and Sources of Band Broadening. Electrophoresis, 2011. 32(5): p. 581-587.
32. Minc, N., et al., Quantitative Microfluidic Separation of DNA in Self-Assembled Magnetic Matrixes. Analytical Chemistry, 2004. 76(13): p. 3770-3776.
33. 曹恆光, 王., 布朗運動、朗之萬方程式、與布朗動力學. 物理雙月刊, 2005. 二十七卷三期.
34. Trahan, D.W. and P.S. Doyle, DNA Collisions with a Large, Conducting Post. Macromolecules, 2010. 43(12): p. 5424-5432.
35. Park, S.-G., D.W. Olson, and K.D. Dorfman, DNA electrophoresis in a nanofence array(). Lab on a chip, 2012. 12(8): p. 1463-1470.
36. Marko, J.F. and E.D. Siggia, Stretching DNA. Macromolecules, 1995. 28(26): p. 8759-8770.
37. Jendrejack, R.M., J.J. de Pablo, and M.D. Graham, Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions. The Journal of Chemical Physics, 2002. 116(17): p. 7752-7759.
38. Jendrejack, R.M., et al., Shear-induced migration in flowing polymer solutions: Simulation of long-chain DNA in microchannels. The Journal of Chemical Physics, 2004. 120(5): p. 2513-2529.
39. Jendrejack, R.M., et al., Effect of confinement on DNA dynamics in microfluidic devices. The Journal of Chemical Physics, 2003. 119(2): p. 1165-1173.
40. Heyes, D.M. and J.R. Melrose, Brownian dynamics simulations of model hard-sphere suspensions. Journal of Non-Newtonian Fluid Mechanics, 1993. 46(1): p. 1-28.
41. Altenbach, J., Segerlind, L. J., Applied Finite Element Analysis. New York-London-Sydney-Toronto, John Wiley Sons 1976. XIII, 422 S., £ 12.60. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1979. 59(10): p. 583-583.
42. Hsieh, C.-C. and T.-H. Lin, Simulation of conformational preconditioning strategies for electrophoretic stretching of DNA in a microcontraction. Biomicrofluidics, 2011. 5(4): p. 044106-044106-17.
43. Underhill, P.T. and P.S. Doyle, On the coarse-graining of polymers into bead-spring chains. Journal of Non-Newtonian Fluid Mechanics, 2004. 122(1–3): p. 3-31.
44. 王勝弘, 於圓柱陣列微流道中以間歇式電場分離DNA-電場強度及開關頻率之影響. 台大化工, 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4590-
dc.description.abstract本研究利用電腦模擬,以布朗動態法(Brownian Dynamics)和有限元素法做結合,測試DNA在六角排列之圓柱陣列微流道中的電泳分離。在直流電場下DNA會與圓柱障礙物有碰撞、上鉤與脫鉤的行為,而不同分子量的DNA經歷此一連串的行為所需的時間也不同,因而能達到分離的效果。此研究從參考文獻開始,一步步從發現前次設計的問題再做改良,共模擬了四種不同的設備與電場模式。
首先我們參考文獻中,使用絕緣圓柱障礙物於微流道中以六角陣列排列,利用連續恆定的直流電場作為電泳驅動的結果,發現在高電場下DNA以直線型態於圓柱之間前進,大幅減少了碰撞機率,因此也嚴重影響到分離的效率。因此為了增加高電場下碰撞的頻率,我們將障礙物改為具高導電性的物質,電力線會向障礙物內縮,也就是電場驅使流道中的物質朝向障礙物進行碰撞,但如此的改良僅讓DNA擦過所有接近的障礙物,並沒有上鉤與脫鉤的過程,仍無法加大不同DNA間的距離,且DNA仍是以直線型態於圓柱之間前進。因此我們將目標轉移為改變DNA在碰撞前的型態,將連續性直流電場改變為間歇性電場,當電場關閉時DNA能鬆弛成線圈狀,提升垂直電場方向的投影長度,如此一來電場再啟時DNA就能造成有效碰撞,提升上鉤與脫鉤的頻率進而增加分離效率,但從DNA的鬆弛過程中我們發現,六角陣列排列的障礙物限制了DNA鬆弛的空間,使得DNA常只是縮短,仍為直線狀,因此我們再將障礙物的排列加入週期性的空隙,增加DNA鬆弛的空間,使DNA在電場關閉時增加鬆弛成線圈狀的機率,進而提升上鉤的機率而增加分離解析度。
zh_TW
dc.description.abstractElectrophoretic separation of DNA through a post array has been heavily investigated in both experiments and simulations. However, the efficiency of the post array for separating long DNA has been found decreased rapidly with increasing Peclet number (or electric field). The loss of resolution power is largely due to the onset of channeling phenomenon that DNA move through the hypothetical “channel” between posts without collisions with the posts. To improve the efficiency of separation at high Peclet number, we propose to use several revised devices. The first is to substitute insulated post with conductive post, in order to increase colliding frequency. But most of the collision is not efficient hooking. Then we introduce intermittent electric field to replace the traditionally adopted constant electric field. When the electric field is turned off, DNA relax and diffuse, resulting in higher probability of collision with posts as the field is turned on. Furthermore, we create periodic spacing in post array, in order to increase spacing for DNA to relax. To test our idea, we have used Brownian dynamics simulations and computational fluid dynamics to simulate lambda-DNA(48.5 kbp) and T4GT7-DNA (166 kbp) under intermittent electric field through a hexagonal post array.en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:43:47Z (GMT). No. of bitstreams: 1
ntu-104-R02524039-1.pdf: 10443640 bytes, checksum: c7752e40ef5b3ab0911e4bb419060148 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 XV
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
第2章 文獻回顧 3
2.1 DNA的物理性質 3
2.1.1 去氧核糖核苷酸( DNA ) 3
2.1.2 堅韌長度( Persistence length ) 4
2.1.3 輪廓長度(Contour length) 4
2.1.4 鬆弛時間(Relaxation time) 5
2.2 線性高分子模型 6
2.3 高分子鏈 7
2.3.1 理想鏈 8
2.3.2 真實鏈 10
2.4 Bead-spring model 13
2.5 電泳分離DNA之文獻回顧 14
2.5.1 傳統凝膠法 14
2.5.2 利用圓柱障礙物分離DNA 15
2.5.3 快拍模式(Snapshot Mode)與終點線模式(Finish-line Mode) 20
2.5.4 DNA於圓柱陣列微流道電泳之相關參數 23
2.6 微流道設計之改良策略 35
2.6.1 以高導電度障礙物取代絕緣障礙物 35
2.6.2 以周期性電場關閉來改變DNA碰撞前的型態 37
2.6.3 綜合微流道改良與電場關閉改變DNA碰撞前的型態 39
第3章 模擬方法 41
3.1 布朗動態法 ( BD ) 41
3.2 有限元素法(Finite Element Method) 46
3.3 FEM連結BD 49
3.4 時間步階 51
3.5 參數設定測試 52
3.6 以較短電泳長度參數擬合求得較長通道之分離解析度 55
3.7 分析工具 56
3.7.1 VMD(Visual Molecular Dynamics) 56
第4章 結果討論 58
4.1 含六角陣列排列之絕緣圓柱障礙物之微流道的電泳分離 58
4.2 六角陣列排列之導電性圓柱障礙物 66
4.3 以間歇電場取代連續恆定電場 78
4.3.1 電場關閉時間周期 79
4.3.2 電場開啟時間周期 84
4.3.3 綜合兩參數之效應 94
4.4 於間歇電場下在含週期性間隙之六角陣列圓柱障礙物微流道中之電泳 97
4.5 不同裝置下的總結分析 103
第5章 結論 107
第6章 參考文獻 109
dc.language.isozh-TW
dc.title以布朗動態法模擬DNA於圓柱陣列微流道中之電泳分離zh_TW
dc.titleBrownian Dynamics Simulation of Electrophoretic DNA Separation in Hexagonal Post Arrayen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee童世煌(Shih-Huang Tung),莊怡哲(Yi-Je Juang)
dc.subject.keywordDNA電泳分離,布朗動態法,有限元素法,間歇式電場,微流道,zh_TW
dc.subject.keywordDNA Electrophoretic separation,Brownian Dynamics,Finite Element Method,Intermittent electric field,Microfluidic channel,en
dc.relation.page112
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf10.2 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved