請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45908完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童世煌(Shih-Huang Tung) | |
| dc.contributor.author | Cheng-Hao Yu | en |
| dc.contributor.author | 游政豪 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:48:36Z | - |
| dc.date.available | 2017-03-19 | |
| dc.date.copyright | 2010-08-06 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-03 | |
| dc.identifier.citation | [1] O. Ikkala and G. ten Brinke, 'Functional materials based on self-assembly of polymeric supramolecules,' Science, vol. 295, pp. 2407-2409, Mar 29 2002.
[2] M. Muthukumar, et al., 'Competing interactions and levels of ordering in self-organizing polymeric materials,' Science, vol. 277, pp. 1225-1232, Aug 29 1997. [3] G. M. Whitesides and B. Grzybowski, 'Self-assembly at all scales,' Science, vol. 295, pp. 2418-2421, Mar 29 2002. [4] S. Park, et al., 'Macroscopic 10-Terabit-per-Square- Inch Arrays from Block Copolymers with Lateral Order,' Science, vol. 323, pp. 1030-1033, 2009. [5] T. Thurn-Albrecht, et al., 'Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates,' Science, vol. 290, pp. 2126-2129, 2000. [6] R. G. Freeman, et al., 'SELF-ASSEMBLED METAL COLLOID MONOLAYERS - AN APPROACH TO SERS SUBSTRATES,' Science, vol. 267, pp. 1629-1632, 1995. [7] Y. Lin, et al., 'Self-directed self-assembly of nanoparticle/copolymer mixtures,' Nature, vol. 434, pp. 55-59, 2005. [8] S. H. Yu and H. Colfen, 'Bio-inspired crystal morphogenesis by hydrophilic polymers,' Journal of Materials Chemistry, vol. 14, pp. 2124-2147, 2004. [9] O. Ikkala and G. ten Brinke, 'Hierarchical self-assembly in polymeric complexes: Towards functional materials,' Chemical Communications, pp. 2131-2137, 2004. [10] S. H. Tung, et al., 'Hierarchical assemblies of block-copolymer-based supramolecules in thin films,' Macromolecules, vol. 41, pp. 6453-6462, 2008. [11] J. M. Lehn and A. Rigault, 'HELICATES - TETRANUCLEAR AND PENTANUCLEAR DOUBLE HELIX COMPLEXES OF CU-I AND POLY(BIPYRIDINE) STRANDS,' Angewandte Chemie-International Edition in English, vol. 27, pp. 1095-1097, 1988. [12] J. Bodycomb, et al., 'Single-grain lamellar microdomain from a diblock copolymer,' Macromolecules, vol. 32, pp. 2075-2077, 1999. [13] E. Schaffer, et al., 'Electrically induced structure formation and pattern transfer,' Nature, vol. 403, pp. 874-877, 2000. [14] L. F. Zhang and A. Eisenberg, 'MULTIPLE MORPHOLOGIES OF CREW-CUT AGGREGATES OF POLYSTYRENE-B-POLY(ACRYLIC ACID) BLOCK-COPOLYMERS,' Science, vol. 268, pp. 1728-1731, 1995. [15] S. A. Jenekhe and X. L. Chen, 'Self-assembly of ordered microporous materials from rod-coil block copolymers,' Science, vol. 283, pp. 372-375, 1999. [16] S. H. Kim, et al., 'Highly oriented and ordered arrays from block copolymers via solvent evaporation,' Advanced Materials, vol. 16, pp. 226-+, 2004. [17] K. A. Koppi, et al., 'SHEAR-INDUCED ISOTROPIC-TO-LAMELLAR TRANSITION,' Physical Review Letters, vol. 70, pp. 1449-1452, 1993. [18] S. S. Patel, et al., 'SHEAR ORIENTATION AND RHEOLOGY OF A LAMELLAR POLYSTYRENE POLYISOPRENE BLOCK-COPOLYMER,' Macromolecules, vol. 28, pp. 4313-4318, 1995. [19] I. W. Hamley, The Physics of Block Copolymers, 1998. [20] D. J. Meier, 'THEORY OF BLOCK COPOLYMERS .I. DOMAIN FORMATION IN A-B BLOCK COPOLYMERS,' Journal of Polymer Science Part C-Polymer Symposium, pp. 81-&, 1969. [21] E. Helfand, 'BLOCK COPOLYMER THEORY .3. STATISTICAL-MECHANICS OF MICRODOMAIN STRUCTURE,' Macromolecules, vol. 8, pp. 552-556, 1975. [22] E. Helfand and Z. R. Wasserman, 'BLOCK COPOLYMER THEORY .5. SPHERICAL DOMAINS,' Macromolecules, vol. 11, pp. 960-966, 1978. [23] E. Helfand and Z. R. Wasserman, 'BLOCK CO-POLYMER THEORY .6. CYLINDRICAL DOMAINS,' Macromolecules, vol. 13, pp. 994-998, 1980. [24] E. Helfand and Z. R. Wasserman, 'BLOCK COPOLYMER THEORY .4. NARROW INTERPHASE APPROXIMATION,' Macromolecules, vol. 9, pp. 879-888, 1976. [25] L. Leibler, 'THEORY OF MICROPHASE SEPARATION IN BLOCK CO-POLYMERS,' Macromolecules, vol. 13, pp. 1602-1617, 1980. [26] J. D. Vavasour and M. D. Whitmore, 'SELF-CONSISTENT MEAN FIELD-THEORY OF THE MICROPHASES OF DIBLOCK COPOLYMERS,' Macromolecules, vol. 25, pp. 5477-5486, 1992. [27] D. A. Hajduk, et al., 'Stability of the perforated layer (PL) phase in diblock copolymer melts,' Macromolecules, vol. 30, pp. 3788-3795, 1997. [28] T. Hashimoto, et al., 'OBSERVATION OF MESH AND STRUT STRUCTURES IN BLOCK COPOLYMER HOMOPOLYMER MIXTURES,' Macromolecules, vol. 25, pp. 1433-1439, 1992. [29] D. A. Hajduk, et al., 'THE GYROID - A NEW EQUILIBRIUM MORPHOLOGY IN WEAKLY SEGREGATED DIBLOCK COPOLYMERS,' Macromolecules, vol. 27, pp. 4063-4075, 1994. [30] E. L. Thomas, et al., 'ORDERED BICONTINUOUS DOUBLE-DIAMOND STRUCTURE OF STAR BLOCK COPOLYMERS - A NEW EQUILIBRIUM MICRODOMAIN MORPHOLOGY,' Macromolecules, vol. 19, pp. 2197-2202, 1986. [31] M. Park, et al., 'Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 1 square centimeter,' Science, vol. 276, pp. 1401-1404, 1997. [32] G. J. Liu, et al., 'Potential skin layers for membranes with tunable nanochannels,' Macromolecules, vol. 30, pp. 1851-1853, 1997. [33] E. L. Thomas, et al., 'PERIODIC AREA-MINIMIZING SURFACES IN BLOCK COPOLYMERS,' Nature, vol. 334, pp. 598-601, 1988. [34] A. Coello, et al., 'Aggregation behavior of bile salts in aqueous solution,' Journal of Pharmaceutical Sciences, vol. 85, pp. 9-15, 1996. [35] A. Hildebrand, et al., 'Bile salt induced solubilization of synthetic phosphatidylcholine vesicles studied by isothermal titration calorimetry,' Langmuir, vol. 18, pp. 2836-2847, 2002. [36] D. G. Oakenfull and L. R. Fisher, 'ROLE OF HYDROGEN-BONDING IN FORMATION OF BILE-SALT MICELLES,' Journal of Physical Chemistry, vol. 81, pp. 1838-1841, 1977. [37] C. Kim, et al., 'Synthesis and the micellar characteristics of poly(ethylene oxide)-deoxycholic acid conjugates,' Langmuir, vol. 16, pp. 4792-4797, 2000. [38] Z. B. Li, et al., 'Multicompartment micelles from ABC miktoarm stars in water,' Science, vol. 306, pp. 98-101, 2004. [39] E. S. Lee, et al., 'Super pH-sensitive multifunctional polymeric micelle,' Nano Letters, vol. 5, pp. 325-329, 2005. [40] P. S. Stayton, et al., 'CONTROL OF PROTEIN-LIGAND RECOGNITION USING A STIMULI-RESPONSIVE POLYMER,' Nature, vol. 378, pp. 472-474, 1995. [41] B. Jeong, et al., 'Biodegradable block copolymers as injectable drug-delivery systems,' Nature, vol. 388, pp. 860-862, 1997. [42] Y. Y. He, et al., 'Self-assembly of block copolymer micelles in an ionic liquid,' Journal of the American Chemical Society, vol. 128, pp. 2745-2750, 2006. [43] K. I. Winey, et al., 'ISOTHERMAL MORPHOLOGY DIAGRAMS FOR BINARY BLENDS OF DIBLOCK COPOLYMER AND HOMOPOLYMER,' Macromolecules, vol. 25, pp. 2645-2650, 1992. [44] T. Hashimoto, et al., 'ORDERED STRUCTURE IN MIXTURES OF A BLOCK COPOLYMER AND HOMOPOLYMERS .2. EFFECTS OF MOLECULAR-WEIGHTS OF HOMOPOLYMERS,' Macromolecules, vol. 23, pp. 4378-4386, 1990. [45] H. Tanaka, et al., 'ORDERED STRUCTURE IN MIXTURES OF A BLOCK COPOLYMER AND HOMOPOLYMERS .1. SOLUBILIZATION OF LOW-MOLECULAR-WEIGHT HOMOPOLYMERS,' Macromolecules, vol. 24, pp. 240-251, 1991. [46] X. Quan, et al., 'OBSERVATION OF SINGLE-CHAIN SCATTERING FROM HOMOPOLYMER BLENDED WITH A TRIBLOCK COPOLYMER,' Journal of Polymer Science Part B-Polymer Physics, vol. 25, pp. 641-650, 1987. [47] C. V. Berney, et al., 'DISTRIBUTION OF MATRIX HOMOPOLYMER IN BLOCK COPOLYMERS OF SPHERICAL MORPHOLOGY,' Macromolecules, vol. 21, pp. 2235-2240, 1988. [48] L. Leibler, et al., 'THEORY OF CRITICAL MICELLE CONCENTRATION FOR SOLUTIONS OF BLOCK CO-POLYMERS,' Journal of Chemical Physics, vol. 79, pp. 3550-3557, 1983. [49] M. D. Whitmore and J. Noolandi, 'THEORY OF PHASE-EQUILIBRIA IN BLOCK COPOLYMER HOMOPOLYMER BLENDS,' Macromolecules, vol. 18, pp. 2486-2497, 1985. [50] A. N. Semenov, 'PHASE-EQUILIBRIA IN BLOCK COPOLYMER HOMOPOLYMER MIXTURES,' Macromolecules, vol. 26, pp. 2273-2281, 1993. [51] A. M. Mayes and M. O. Delacruz, 'CYLINDRICAL VERSUS SPHERICAL MICELLE FORMATION IN BLOCK COPOLYMER HOMOPOLYMER BLENDS,' Macromolecules, vol. 21, pp. 2543-2547, 1988. [52] M. W. Matsen, 'PHASE-BEHAVIOR OF BLOCK-COPOLYMER HOMOPOLYMER BLENDS,' Macromolecules, vol. 28, pp. 5765-5773, 1995. [53] P. K. Janert and M. Schick, 'Phase behavior of binary homopolymer/diblock blends: Temperature and chain length dependence,' Macromolecules, vol. 31, pp. 1109-1113, 1998. [54] S. W. Sides and G. H. Fredrickson, 'Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure,' Polymer, vol. 44, pp. 5859-5866, 2003. [55] L. Leibler and P. A. Pincus, 'ORDERING TRANSITION OF COPOLYMER MICELLES,' Macromolecules, vol. 17, pp. 2922-2924, 1984. [56] A. P. Gast and L. Leibler, 'INTERACTIONS OF STERICALLY STABILIZED PARTICLES SUSPENDED IN A POLYMER-SOLUTION,' Macromolecules, vol. 19, pp. 686-691, 1986. [57] R. Hasegawa, et al., 'Optimum graft density for dispersing particles in polymer melts,' Macromolecules, vol. 29, pp. 6656-6662, 1996. [58] R. J. Spontak, et al., 'LINEAR MULTIBLOCK COPOLYMER HOMOPOLYMER BLENDS OF CONSTANT COMPOSITION .1. LOW-MOLECULAR-WEIGHT HOMOPOLYMERS,' Macromolecules, vol. 26, pp. 5118-5124, 1993. [59] A. Avgeropoulos, et al., 'Swelling behavior of ordered miktoarm star block copolymer-homopolymer blends,' Polymer, vol. 43, pp. 3257-3266, 2002. [60] L. Z. Yang, et al., 'Phase behavior of I2S single graft block copolymer/homopolymer blends,' Macromolecules, vol. 34, pp. 4235-4243, 2001. [61] Y. Lyatskaya, et al., 'Designing compatibilizers to reduce interfacial tension in polymer blends,' Journal of Physical Chemistry, vol. 100, pp. 1449-1458, 1996. [62] A. V. Ruzette and L. Leibler, 'Block copolymers in tomorrow's plastics,' Nature Materials, vol. 4, pp. 19-31, 2005. [63] F. Zuluaga, et al., 'The ambient temperature synthesis and characterization of bile acid polymers,' Polymer Bulletin, vol. 42, pp. 41-46, 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45908 | - |
| dc.description.abstract | 雙親性團聯式共聚物在選擇性溶劑中,其親溶劑鏈段會與溶劑接觸,非親溶劑鏈段因不相容於溶劑當中,而被親溶劑鏈段包圍以避免與溶劑接觸,因此可以自組裝形成微米或奈米等級尺寸結構。常見的結構包含球狀微胞、柱狀微胞、球狀液胞等等,形成這些微結構的條件與機制已被廣泛的研究。
不同於以往的液態溶液系統,本研究發現團聯式共聚物 PS-b-P4VP 在高溫熔融態的脫氧膽酸(Deoxycholic acid)中能形成一系列的自組裝結構,當溫度下降至室溫後,其微結構仍可完整保留,而形成特殊的固態自組裝系統。我們利用穿透式電子顯微鏡觀察在適當的退火溫度與時間下,可藉由改變團聯式共聚物分子量,而製備出球狀微胞、柱狀微胞、液胞等不同的微結構。另外,調整退火時間與溫 度,其微結構也會隨之改變,我們將在論文中提出微結構形成的機制。 由於微結構可保留在固態脫氧膽酸中,所以我們嘗試將脫氧膽酸以溶劑去除,並觀察到在脫氧膽酸移除後,團聯式共聚物所形成的微結構可被完整萃取出來。這些萃取出來的微結構,尤其是液胞結構,有機會進一步應用於藥物釋放甚至其他領域。 | zh_TW |
| dc.description.abstract | Amphiphilic block copolymers in selective solvents self-assemble into micro/nano-scaled structures, such as spherical micelles, cylindrical micelles and vesicles, in which solvent-philic blocks tend to contact with solvents and shield solvent-phobic blocks from the solvents. The formation conditions and mechanisms of such structures have been widely studied.
Different from the conventional micellization in liquid systems, ,in this study we found that block copolymer poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) can self-assemble in melted deoxycholic acid (DCA) at high temperature and more interestingly, the structures can be retained in “solid state” after cooled down to room temperature. Transmission electron microscopy (TEM) was used to probe the structure and we found that different self-assembled structures, including spherical micelles, cylindrical micelles and vesicles can be obtained by varying the length of block copolymers and the morphologies depend on annealing temperature and annealing time. We will discuss the mechanisms of the micellization in this thesis. Since these nano-structures can be retained in solid state, we tried to extract the nano-structures by removing deoxycholic acid using appropriate solvents. These extracted structures, especially the vesicles, are potential for applications, such as drug delivery. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:48:36Z (GMT). No. of bitstreams: 1 ntu-99-R97549032-1.pdf: 7441965 bytes, checksum: c1da67ee5267c682863c5a87e53f5979 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 謝辭 ............................................................... I
摘要 .............................................................................................................................. II Abstract ........................................................................................................................ III 圖目錄 ......................................................................................................................... VI 表目錄 .......................................................................................................................... X 第一章 緒論 ............................................................................................................... 1 1-1前言 ................................................................................................................. 1 1-2 研究動機 ...................................................................................................... 3 第二章 文獻回顧 ....................................................................................................... 6 2-1 超分子化學的發展 ...................................................................................... 6 2-2 團聯式共聚物 .............................................................................................. 7 2-3 雙親性小分子(界面活性劑)在溶液中形態 ............................................. 15 2-3.1 微胞之臨界微胞濃度 ..................................................................... 15 2-3.2 微胞的結構與型態 ......................................................................... 16 2-3.3 生物型界面活性劑-脫氧膽酸........................................................ 17 2-4 聚合物微胞 .................................................................................................. 22 2-5 團聯式共聚物混摻系統 .............................................................................. 26 第三章 實驗方法與儀器 ......................................................................................... 31 3-1 材料 ............................................................................................................ 31 3-2 實驗步驟 .................................................................................................... 33 3-2.1 樣品備製 ......................................................................................... 33 3-2.2 熱退火處理 ..................................................................................... 33 3-2.3 萃取 PS-b-P4VP 之微結構 ............................................................ 33 3-3 儀器原理 .................................................................................................... 34 3-3.1 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer, FT-IR) .......................................................................................................... 34 3-3.2 熱重分析儀(Thermo-Gravity Analyzer,TGA) ............................ 34 3-3.3 微差掃瞄卡計(Differential Scanning Calorimeter,DSC) ............ 34 3-3.4 穿透式電子顯微鏡(Transmission electron microscopy,TEM) ... 35 3-5.5 掃瞄式電子顯微鏡(Scanning electron microscope,SEM) .......... 35 第四章 結果與討論 ................................................................................................. 36 4-1 PS-b-P4VP 與DCA 錯合物之鍵結鑑定與形態觀察 ........................... 36 4-1.1 未經過熱退火錯合物之鍵結鑑定與形態觀察 .......................... 37 4-1.2 經過熱退火錯合物之鍵結鑑定與形態觀察 .............................. 39 4-2 團聯式共聚物 PS-b-P4VP 不同鏈段比在脫氧膽酸中自組裝微相分離形 態 ......................................................................................................................... 45 4-2.1 時間對於PS-b-P4VP 於脫氧膽酸中微相分離的影響 .............. 48 4-2.2 溫度對於PS-b-P4VP 於脫氧膽酸中微相分離的影響 .............. 49 4-3 脫氧膽酸於高溫下酯化反應 ................................................................. 59 4-4 萃取PS-b-P4VP微結構 ......................................................................... 65 4-5 其他小分子與團聯式共聚物在高溫時的自組裝行為 ......................... 69 第五章 結論 ............................................................................................................. 74 第六章 參考文獻 ..................................................................................................... 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 膽酸 | zh_TW |
| dc.subject | 液胞 | zh_TW |
| dc.subject | 微胞 | zh_TW |
| dc.subject | 雙親性團聯式共聚物 | zh_TW |
| dc.subject | 固態選擇性溶劑 | zh_TW |
| dc.subject | 自組裝 | zh_TW |
| dc.subject | deoxycholic acid | en |
| dc.subject | micelles | en |
| dc.subject | vesicles | en |
| dc.subject | self-assembly | en |
| dc.subject | amphiphilic block copolymers | en |
| dc.subject | solid selective solvent | en |
| dc.title | 苯乙烯-乙烯吡啶團聯共聚物在膽酸中的自組裝形態 | zh_TW |
| dc.title | Self-assembly of Polystyrene-b-poly(4-vinylpyridine)
in Deoxycholic acid | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴子安(Chi-An Dai),黃慶怡(Ching-I Huang) | |
| dc.subject.keyword | 微胞,液胞,自組裝,雙親性團聯式共聚物,固態選擇性溶劑,膽酸, | zh_TW |
| dc.subject.keyword | micelles,vesicles,self-assembly,amphiphilic block copolymers,solid selective solvent,deoxycholic acid, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 7.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
