請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45871完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳光鐘(Kuang-Chong Wu) | |
| dc.contributor.author | I-Hsuan Lin | en |
| dc.contributor.author | 林宜璇 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:47:46Z | - |
| dc.date.available | 2010-08-12 | |
| dc.date.copyright | 2010-08-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-03 | |
| dc.identifier.citation | [1] D. M. Barnett and J. Lothet, 'An Image Force Theorem for Dislocations in Anisotropic Bicrystals,' Journal of Physics F: Metal Physics vol. 4, pp. 1618-1635, 1974.
[2] S. T. Choi and Y. Y. Earmme, 'Elastic Study on Singularities Interacting with Interfaces Using Alternating Technique: Part I. Anisotropic Trimaterial,' International Journal of Solids and Structures, vol. 39, pp. 943-957, 2002a. [3] S. T. Choi and Y. Y. Earmme, 'Elastic Study on Singularities Interacting with Interfaces Using Alternating Technique Part II. Isotropic Trimaterial,' International Journal of Solids and Structures, vol. 39., pp. 1199-1211, 2002b. [4] T. Kurihara, 'Edge Dislocation in an Anisotropic Material with a Surface Layer ' International Journal of Engineering Science, vol. 11, pp. 891-903, 1973. [5] M. S. Lee and J. Dundur, 'Edge Dislocation in a Surface Layer,' International Journal of Engineering Science, vol. 11, pp. 87-94, 1973. [6] C. C. Ma and R. L. Lin, 'Full-Field Analysis of A Planar Anisotropic Layered Half-Plane for Concentrated forces and Edge Dislocations,' Procceding of the Royal society of London, vol. 468, pp. 2369-2392, 2002. [7] A. N. Stroh, 'Dislocations and Cracks in Anisotropic Elasticity ' Philos. Mag. , pp. 625-646, 1958 [8] T. C. T. Ting, 'Image Singularities of Green's Functions for Anisotropic Elastic Half-Spaces and Bimaterials,' Quarterly Journal of Mechanics and Applied Mathematics, vol. 45, pp. 119-139, 1992. [9] T. C. T. Ting, 'Anisotropic Elasticity Theory and Applications,' Oxford University Press,New York., 1996. [10] K. Tsubouchi, et al., 'AlN Material Constants Evaluation and Saw Properties on AlN/Al2O3 and AlN/Si,' Ultrasonics Symposium Proceedings, vol. 1, p. 375, 1981. [11] R. Weeks, et al., 'Exact Analysis of an Edge Dislocation near a Surface Layer,' International Journal of Engineering Science, vol. 6, pp. 365-372, 1968. [12] A. F. Wright, 'Elastic Properties of Zinc-Blende and Wurtzite AlN, GaN, and InN,' J. Appl. Phys.Sep., vol. 82, pp. 2833-2839, 1997. [13] K. C. Wu, 'Nonsingular Boundary Integral Equations for Two-Dimensional Anisotropic Elasticity ' ASME Journal of Applied Mechanics,Sep., vol. 67, pp. 618-620, 2000. [14] K. C. Wu and C. T. Chen, 'Stress Analysis of Anisotropic Elastic V-Notched Bodies,' International Journal Solids Structures, vol. 33, pp. 2403-2416, 1996. [15] K. C. Wu and Y. T. Chiu, 'The Elastic Fields of a Dislocation in Ananisotropic Strip,' International Journal of Solids and Structures vol. 32, pp. 543-552, 1995. [16] K. C. Wu, et al., 'A New Boundary Integral Equation Formulation for Linear Elastic Solids,' ASME Journal of Applied Mechanics,June., vol. 59, pp. 344-348, 1992. [17] M. S. Wu and H. Y. Wang, 'Solutions for Edge Dislocation in Anisotropic Film-substrates System by the Image Method ' Mathematics and Mechanics of Solids, vol. 12, pp. 183-212, 2007. [18] M. G. Xue, et al., 'Analysis of the Interfacial Shear Stresses Between Film and Half-Space Substrate,' Journal of Mechanical Strength, pp. 527-530, 2002. [19] K. Zhou and M. S. Wu, 'Elastic Fields due to an Edge Dislocation in an Isotropic Film-Substrate by the Image Method ' Acta Mechanica, vol. 211, pp. 271-292, 2010. [20] 呂欣泰, '差排於異向性材料層域之全場解析與映射力研究,' 國立台灣大學機械工程學研究所碩士論文, 2001. [21] 李朝祥, '差排於異向彈性楔型體之分析,' 國立台灣大學應用力學研究所碩士論文, 1997. [22] 洪偉恩, 'MATLAB 7 程式設計,' 旗標出版公司, 2005. [23] 張之珉, '彈性板受集中載重之分析,' 國立台灣大學應用力學研究所碩士論文,2009. [24] 鄭志偉, '非奇異邊界積分方程式之發展與應用,' 國立台灣大學應用力學研究所碩士論文, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45871 | - |
| dc.description.abstract | 本文目的為探討一鍍膜半空間,即為一半無窮平面上完美接合一有限厚度的層板,受到線差排或均佈線力作用產生的情形。本研究是以雙層異向性材料(bimaterials)的格林函數解建構鍍膜半空間含均佈線力或線差排的非奇異邊界積分方程式。該方程式之基本變數為鍍膜表面的位移梯度,因相關積分不具奇異性,故可使用高斯積分法求得數值解。由表面位移梯度即可計算出任意位置所產生的應力場。與文獻中已有的算例結果比較顯示,本文所提之方法具有極高的準確性。 | zh_TW |
| dc.description.abstract | The objective of this thesis is to discuss the stress distribution of a line dislocation or a line force in a coated half-spaces. A coated half-space is a half-space perfectly coated with a layer with finite thickness. The Green’s function for anisotropic biomaterials is used to construct a nonsingular boundary integration for coated half-spaces with a line force or a line dislocation. The basic unknown in the integral equation is the gradient of the surface displacement, which can be calculated numerically using Gaussian quadrature as the related integral is non-singular. The stress fields at any point in the coated half-space can be computed once the gradient of the surface displacement is determined. Comparison with the existing results show that the proposed method is highly accurate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:47:46Z (GMT). No. of bitstreams: 1 ntu-99-R97543019-1.pdf: 16334447 bytes, checksum: a00f262cbed0ffc5ce0dd0bb5bd7e452 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 序論 1 1.1 研究動機與文獻回顧 1 1.2 本文大綱 2 第二章 異向性彈性力學理論 4 2.1 彈性力學基礎方程式 4 2.2 Stroh’s Formulation 5 2.3 特徵值與特徵向量的正交性質 7 2.4 雙層異向性材料(Bimaterials)的格林函數(Green’s Function) 10 第三章 邊界積分方程式 14 3.1 對偶邊界積分方程式 14 3.2 非奇異邊界積分方程式 16 3.3 含差排之非奇異邊界積分方程式 17 3.4 鍍膜半空間的邊界積分方程式 18 3.5 高斯積分法 20 第四章 鍍膜半空間 21 4.1 鍍膜半空間表面受集中力 21 4.2 鍍膜半空間之膜內部受集中力或差排作用 23 4.3 鍍膜半空間之下半空間受集中力或差排作用 24 4.4 差排之能量力計算 28 第五章 數值分析結果 29 5.1 理論驗證 29 5.2 鍍膜半空間表面受垂直集中力作用 36 5.2.1 鍍膜半空間AlN/Si 36 5.2.2 鍍膜半空間GaN/Si 36 5.3 鍍膜半空間x2=0.5h處受差排作用 44 5.3.1 鍍膜半空間AlN/Si 44 5.3.2 鍍膜半空間GaN/Si 44 5.4 鍍膜半空間界面x2=0處受差排作用 51 5.4.1 鍍膜半空間A1N/Si 51 5.4.2 鍍膜半空間GaN/Si 51 5.5 鍍膜半空間x2=-0.5h處受差排作用 58 5.5.1 鍍膜半空間A1N/Si 58 5.5.2 鍍膜半空間GaN/Si 58 5.6 鍍膜半空間受差排之能量力計算 65 第六章 結論與未來展望 70 參考文獻 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 邊界積分方程式 | zh_TW |
| dc.subject | 鍍膜半空間 | zh_TW |
| dc.subject | 差排 | zh_TW |
| dc.subject | 能量力 | zh_TW |
| dc.subject | image force | en |
| dc.subject | coated half-spaces | en |
| dc.subject | boundary integration equations | en |
| dc.subject | dislocation | en |
| dc.title | 邊界積分法於鍍膜半空間之應用 | zh_TW |
| dc.title | Application of an Integral Equation Method to Coated Half-Spaces | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭茂坤,馬劍清,張正憲 | |
| dc.subject.keyword | 鍍膜半空間,邊界積分方程式,差排,能量力, | zh_TW |
| dc.subject.keyword | coated half-spaces,boundary integration equations,dislocation,image force, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 15.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
