請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45857完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱時宜(Shih-I Chu) | |
| dc.contributor.author | I-Lin Liu | en |
| dc.contributor.author | 劉怡麟 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:47:28Z | - |
| dc.date.available | 2012-08-05 | |
| dc.date.copyright | 2010-08-05 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-04 | |
| dc.identifier.citation | Bibliography
[1] National Research Council Committee on AMO 2010. Controlling the quantum world: The science of atoms, molecules, and photons. 2007. [2] M. Hentschel, CH. Spielmann R. Kienberger, N. Milosevic T. Brabec G. A. Reider, U. HEINZMANN P. Corkum, and F. Krausz M. Drescher. Attosecond metrology. Nature, 414:509–513, November 2001. [3] Markus Drescher, Reinhard Kienberger Michael Hentschel, Christian Spielmann Gabriel Tempea, Paul B. Corkum Georg A. Reider, and Ferenc Krausz1. X-ray pulses approaching the attosecond frontier. Science, 291:1923, March 2001. [4] M. Fischer, N. Kolachevsky, M. Zimmermann, R. Holzwarth, Th. Udem, T. W. H¨ansch, M. Abgrall, J. Gr¨unert, I. Maksimovic, S. Bize, H. Marion, F. Pereira Dos Santos, P. Lemonde, G. Santarelli, P. Laurent, A. Clairon, C. Salomon, M. Haas, U. D. Jentschura, and C. H. Keitel. New limits on the drift of fundamental constants from laboratory measurements. Phys. Rev. Lett., 92(23):230802, Jun 2004. [5] H. S. Margolis, G. Huang G. P. Barwood, K. Szymaniec H. A. Klein, S. N. Lea, and P. Gill. Hertz-level measurement of the optical clock frequency in a single 88sr+ ion. Science, 306(5700):1355–1358, November 2004. [6] M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, Th. Udem, M. Weitz, T. W. H¨ansch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon. Measurement of the hydrogen 1s- 2s transition frequency by phase coherent comparison with a microwave cesium fountain clock. Phys. Rev. Lett., 84(24):5496–5499, Jun 2000. [7] R. Holzwarth, Th. Udem, T. W. H¨ansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett., 85(11):2264–2267, Sep 2000. [8] A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. H¨ansch, and F. Krausz. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett., 85(4):740–743, Jul 2000. [9] S. A. Diddams, 1 E. A. Curtis Th. Udem, 1 J. C. Bergquist, L. Hollberg R. E. Drullinger, W. D. Lee W. M. Itano, K. R. Vogel C. W. Oates, and D. J. Wineland. An optical clock based on a single trapped 199hg+ ion. Science, 293(5531):825–828, Aug 2001. [10] Masao Takamoto, Ryoichi Higashi1 Feng-Lei Hong, and Hidetoshi Katori. An optical lattice clock. Nature, 435:321–324, May 2005. [11] X. M. Tong and S. I. Chu. Theoretical study of multiple high-order harmonic generation by intense ultrashort pulsed laser fields: A new generalized pseudospectral time-dependent method. Chem. Phys., 217(2-3):119–130, 1997. [12] X. M. Tong and S. I. Chu. Density-functional theory with optimized effective potential and self-interaction correction for ground states and autoionizing resonances. Phys. Rev. A, 55(5):3406–3416, 1997. [13] X. Chu and S. I. Chu. Self-interaction-free time-dependent density-functional theory for molecular processes in strong fields: High-order harmonic generation of H2 in intense laser fields. Phys. Rev. A, 63(2):023411, 2001. [14] X. Chu and S. I. Chu. Time-dependent density-functional theory for molecular processes in strong fields: Study of multiphoton processes and dynamical response of individual valence electrons of N2 in intense laser fields. Phys. Rev. A, 64(6):063404, 2001. [15] R. Haight and D. R. Peale. Antibonding state on the ge(111):as surface: Spectroscopy and dynamics. Phys. Rev. Lett., 70(25):3979–3982, Jun 1993. [16] F. Qu´er´e, S. Guizard, Ph. Martin, G. Petite, H. Merdji, B. Carr´e, J-F. Hergott, and L. Le D´eroff. Hot-electron relaxation in quartz using high-order harmonics. Phys. Rev. B, 61(15):9883–9886, Apr 2000. [17] W. Theobald, R. H¨aßner, C. W¨ulker, and R. Sauerbrey. Temporally resolved measurement of electron densities (gt; 1023cm−3) with high harmonics. Phys. Rev. Lett., 77(2):298–301, Jul 1996. [18] P. Sali`eres, L. Le D´eroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carr´e. Frequency-domain interferometry in the xuv with high-order harmonics. Phys. Rev. Lett., 83(26):5483–5486, Dec 1999. [19] Taro Sekikawa, Tomoki Ohno, Tomohiro Yamazaki, Yasuo Nabekawa, and Shuntaro Watanabe. Pulse compression of a high-order harmonic by compensating the atomic dipole phase. Phys. Rev. Lett., 83(13):2564–2567, Sep 1999. [20] Ying-Cheng Chen, Yean-An Liao, Long Hsu, and Ite A. Yu. Simple technique for directly and accurately measuring the number of atoms in a magneto-optical trap. Phys. Rev. A, 64(3):031401, Aug 2001. [21] J. J. Carrera, X. M. Tong, and S. I. Chu. Creation and control of single attosecond XUV pulse by few-cycle laser pulses. Phys. Rev. A, 74:023404, 2006. [22] A. McPherson, H. Jara G. Gibson, T. S. Luk U. Johann, K. Boyer I. A. McIn- tyre, and C. K. Rhodes. Studies of multiphoton production of vacuumultraviolet radiation in the rare gases. JOSA B, 4(4):595–601, April 1987. [23] M Ferray, X F Li A L’Huillier, G Mainfray L A Lompre, and C Manus. Multipleharmonic conversion of 1064 nm radiation in rare gases. J. Phys. B, 21:L31, 1988. [24] Michael D. Perry and John K. Crane. High-order harmonic emission from mixed fields. Phys. Rev. A, 48(6):R4051–R4054, Dec 1993. [25] J. J. Macklin, J. D. Kmetec, and C. L. Gordon. High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett., 70(6):766–769, Feb 1993. [26] Anne L’Huillier and Ph. Balcou. High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett., 70(6):774–777, Feb 1993. [27] P. B. Corkum, N. H. Burnett, and F. Brunel. Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett., 62(11):1259–1262, Mar 1989. [28] P. B. Corkum. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett., 71(13):1994–1997, Sep 1993. [29] Rodrigo L´opez-Martens, Katalin Varj´u, Per Johnsson, Johan Mauritsson, Yann Mairesse, Pascal Sali`eres, Mette B. Gaarde, Kenneth J. Schafer, Anders Persson, Sune Svanberg, Claes-G¨oran Wahlstr¨om, and Anne L’Huillier. Amplitude and phase control of attosecond light pulses. Phys. Rev. Lett., 94(3):033001, Jan 2005. [30] Kenneth C. Kulander. Time-dependent hartree-fock theory of multiphoton ionization: Helium. Phys. Rev. A, 36(6):2726–2738, Sep 1987. [31] Kenneth C. Kulander. Multiphoton ionization of hydrogen: A time-dependent theory. Phys. Rev. A, 35(1):445–447, Jan 1987. [32] S. Long, W. Becker, and J. K. McIver. Model calculations of polarizationdependent two-color high-harmonic generation. Phys. Rev. A, 52(3):2262–2278, Sep 1995. [33] W. Becker, S. Long, and J. K. McIver. Interplay between above-threshold multiphoton detachment and higher-harmonic generation. Phys. Rev. A, 46(9):R5334–R5337, Nov 1992. [34] S. I. Chu and D. A. Telnov. Generalized Floquet formulation of time-dependent density functional theory for multiphoton processes in intense laser fields. J. Chinese Chem. Soc., 49(5):737–750, 2002. Invited paper for the celebration of the 70th anniversary of Chinese Chemical Society in Taipei. [35] S. I. Chu and D. A. Telnov. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser. Phys. Rep., 390:1–131, 2004. Invited review article. [36] Huale Xu. Non-perturbative theory of harmonic generation under a highintensity laser field. Zeitschrift fr Physik D Atoms, Molecules and Clusters, 28(1):27–36, March 1993. [37] W. Becker, S. Long, and J. K. McIver. Higher-harmonic production in a model atom with short-range potential. Phys. Rev. A, 41(7):4112–4115, Apr 1990. [38] J. Y. Wang, S. I. Chu, and C. Laughlin. Multiphoton detachment of H−. II. Intensity-dependent photodetachment rates and threshold behavior – complex-scaling generalized pseudospectral method. Phys. Rev. A, 50(4):3208– 3215, 1994. [39] G. H. Yao and S. I. Chu. Generalized pseudospectral methods with mappings for bound and resonance state problems. Chem. Phys. Lett., 204(3-4):381–388, 1993. [40] Jeffrey L. Krause, Kenneth J. Schafer, and Kenneth C. Kulander. Calculation of photoemission from atoms subject to intense laser fields. Phys. Rev. A, 45(7):4998–5010, Apr 1992. [41] T. F. Jiang and S. I. Chu. High-order harmonic generation in atomic hydrogen at 248 nm: Dipole-moment versus acceleration spectrum. Phys. Rev. A, 46:7322–7324, 1992. [42] Mark R. Hermann and J. A. Fleck. Split-operator spectral method for solving the time-dependent schr¨odinger equation in spherical coordinates. Phys. Rev. A, 38(12):6000–6012, Dec 1988. [43] Christoph Gohle, Maximilian Herrmann Thomas Udem1, Ronald Holzwarth Jens Rauschenberger, Ferenc Krausz Hans A. Schuessler, and Theodor W. Hnsch. A frequency comb in the extreme ultraviolet. Nature, 436:234–237, Mar 2005. [44] J. J. Carrera, S.-K. Son, and S. I. Chu. Ab initio theoretical investigation of the frequency comb structure and coherence in the vuv-xuv regimes via high-order harmonic generation. Phys. Rev. A, 77:031401(R), 2008. [45] J. J. Carrera and S. I. Chu. Ab initio time-dependent density-functional-theory study of the frequency comb structure, coherence, and dephasing of multielectron systems in the vuv-xuv regimes via high-order harmonic generation. Phys. Rev. A, 79:063410, 2009. [46] S.-K. Son and S. I. Chu. Many-mode Floquet theoretical approach for coherent control of multiphoton dynamics driven by intense frequency-comb laser fields. Phys. Rev. A, 77:063406, 2008. [47] G. Orlando, E. Fiordilino P.P. Corso, and F. Persico. Generation of isolated attosecond pulses using unipolar and laser fields. Journal of Modern Optics, 56(16):1761–1767, Sep 2009. [48] X. M. Tong and S. I. Chu. Probing the spectral and temporal structures of high-order harmonic generation in intense laser pulses. Phys. Rev. A, 61(2):021802(R), 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45857 | - |
| dc.description.abstract | Extreme nonlinear optics happens when we turn up the focused laser power and electrons are literally ripped away from atoms by the laser field. An electron is stripped from an atom, gains energy, and releases this energy as a soft x-ray photon, this accumulated energy as a high-energy photon when it recombines with an ion. In the last ten years, scientists pay close attention to produce laser pulse in shorter length to observe the motion of electrons in atom and molecules. In this thesis, we present a simple and convenient method to generate an isolated attosecond pulse via HHG power spectra of hydrogen atom driven by three-color laser field. This special electric field is composed of three special ratio frequency (ω, ω/2 , 2ω/3 ) with the same laser intensity. The field can be used to produce a single attosecond XUV pulse with strong intensity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:47:28Z (GMT). No. of bitstreams: 1 ntu-99-R97222060-1.pdf: 36414991 bytes, checksum: 9246962a49adde829f9dc5bc01020108 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Contents
1 Introduction 1 1.1 High-Harmonic Generation........................ 2 1.2 Frequency Comb............................. 3 1.3 Speeding Up the Pulse: Attosecond Science.............. 4 1.4 Generating Attosecond Pulse....................... 5 1.5 Applying Attosecond Pulse........................ 6 2 High-order Harmonic Generation (HHG) ..................9 2.1 Cutoff Position.............................. 12 2.2 Theoretical Approximations....................... 13 3 Generalized Time-Dependent Pseudospectral Methods for Accurate Solution of TDSE ..................16 4 Hydrogen HHG Power Spectra Driven by An Intense Laser 26 4.1 Hydrogen HHG spectra driven by a long pulse............. 26 4.2 Ab Initio Theoretical Investigation of the Frequency Comb Structure and Coherence via HHG......................... 31 4.2.1 GPSM of the Frequency Comb Spectrum............ 31 4.2.2 Analysis the Signal of Comb Laser............... 34 4.2.3 HHG Spectrum of Hydrogen in a Frequency Comb Laser Field ..................38 5 Creation and Control of an Isolated Attosecond Pulse ..................43 5.1 Creation and Control of an Isolated Attosecond Pulse Using Combination of a Short Pulse and a Half Cycle Pulse (HCP)........ 43 5.1.1 Combination of A Short Pulse and A HCP........... 43 5.1.2 Wavelet Time-frequency Analysis of the HHG Spectrum..................... 50 5.1.3 Semi-classical Analysis of the Spectrum in the Cutoff Region................... 57 5.1.4 Comparison of Generation of an Isolated Attosecond Pulse Using Different HCP....................... 62 5.2 Creation and Control of an Isolated Attosecond Pulse Using Three-Color Laser Field............................. 66 6 Summary..................75 A Semi-classical Analysis of the Cutoff Region..................78 Bibliography..................83 | |
| dc.language.iso | en | |
| dc.subject | 諧和製造 | zh_TW |
| dc.subject | HHG | en |
| dc.title | 優化多光雷射製造遠紫外線阿秒雷射 | zh_TW |
| dc.title | Creation and Optimization of Single Attosecond XUV Pulse by Multicolor Laser Pulses | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 管希聖(Hsi-Sheng Goan),鄭王耀 | |
| dc.subject.keyword | 諧和製造, | zh_TW |
| dc.subject.keyword | HHG, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-04 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 35.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
