請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45856
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳復國(Fuh-Kuo Chen) | |
dc.contributor.author | Hong-Syuan Su | en |
dc.contributor.author | 蘇弘軒 | zh_TW |
dc.date.accessioned | 2021-06-15T04:47:27Z | - |
dc.date.available | 2013-08-06 | |
dc.date.copyright | 2010-08-06 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-04 | |
dc.identifier.citation | [1] T. A. Kals and R. Eckstein, “Miniaturization if sheet metal working”, Journal of Materials Processing Technology, 103, 2000, pp. 95-101.
[2] U. Engel and Reckstein, “Microforming-from basic research to its realization”, Journal of materials processing technology, 125-126, 2002, pp. 35-44. [3] M. Geiger, M. Kleiner, R. Eckstein, N. Tiesier and U. Engel, “Microforming”, Annals of The CIRP, 50, 2, 2001, pp. 445-462. [4] J. F. Michel, P. Picart, “Size effects on the constitutive behaviour for brass in sheet metal forming”, Journal of Materials Processing Technology, 141, 2003, pp. 439-446. [5] A. Messner, U. Engel, R. Kals and F. Vollertsen, “Size effect in the fe-simulation of micro-forming processes”, Journal of Materials Processing Technology, 45, 1994, pp. 371-376 [6] U. Engel, “Tribology in microforming”, Wear, 260, 2006, pp. 265-273. [7] U. Engel, A. Messner and N. Tiesler, “Cold forging of microparts-effect of miniaturization on friction”, Proccedings of the 1st EASFORM Conference on Materials Forming, Sophia Antipolis, France, 1998, pp. 77-80. [8] A. Buschhausen, K. Weinmann, J. Y. Lee and T. Altan, “Evaluation of lubrication and friction in cold forging using a double backward-extrusion Processing”, Journal of Materials Processing Technology, 33, 1992, pp. 95-108. [9] Y. Saotome, K. Yasuda and H. Kaga, “Microdeep drawability of very thin sheet steels”, Journal of Materials Processing Technology, 113, 1-3, 2001, pp. 641-647. [10] A. Bayer, A. Gillner, P. Groche and R. Erhardt, “Laser-assisted forming of metallic micro-parts”, Fraunhofer Institute For Laser, 5063, 2003, pp.157-162. [11] F. Vollertsen, Z. Hu, H. S. Niehoff and C. Theiler, “State of the art in micro forming and investigations into micro deep drawing”, Journal of Materials Processing Technology, 151, 2004, pp. 70–79. [12] F. Vollertsen, H. S. Niehoff and Z. Hu, “State of the art in micro forming”, International Journal of Machine Tools & Manufacture, 46, 2006, pp. 1172–1179. [13] H. Schulze Niehoffa, Z. Hub and F. Vollertsen, “mechanical and laser micro deep drawing”, Key Engineering Materials, 344, 2007, pp. 799-806. [14] K. Manabe, T. Shimizu and H. Koyamab, “Evaluation of milli-scale cylindrical cup in two-stage deep drawing process”, Journal of Materials Processing Technology, 187–188, 2007, pp. 245–249. [15] X. L. Geng, K. S. Zhang, Y. Q. Guo and L. Qin, “Experimental and numerical study of micro deep drawing of copper single crystal”, Computers, Materials and Continua, 13, 1, 2009, pp.1-15. [16] F. H. Yeh, C. L. Li and Y. H. Lu “Study of thickness and grain size effects on material behavior in micro-forming”, Journal of materials processing technology, 201, 2008, pp. 237-241. [17] 王繼敏, “不銹鋼與金屬腐蝕”, 1997, 科技圖書股份有限公司. [18] 曾俊發, “尺寸效應於精微成形之基礎研究”, 2002, 國立台灣大學機械工程研究所碩士論文. [19] 丁永健, “金屬精微成形實驗規範之建立與尺寸效應機制之研究”, 2005, 國立台灣大學機械工程研究所碩士論文. [20] 施文傑, “不銹鋼薄板精微彎曲成形之研究”, 2009, 國立台灣大學機械工程研究所碩士論文. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45856 | - |
dc.description.abstract | 隨著各種產品的微小化,微型零件的需求量也越來越大,因此精微成形製程之研究亦日趨重要。而在精微圓筒引伸成形方面,其應用範圍相當廣泛,如手機震動馬達外殼或是微小電池外殼。目前傳統圓筒引伸已有相當成熟之技術,然而當材料尺寸微小化後,其材料性質將會產生尺寸效應(Size effect)而有所改變。由於尺寸效應之存在,使得傳統的成形理論不能直接應用到精微成形技術中。
本研究以不銹鋼304做為研究材料,首先探討在不同厚度下,不同晶粒尺寸對於材料應力應變曲線、異向性指數與加工硬化指數之影響。實驗結果顯示隨著晶粒尺寸增加,應力應變曲線與平均異向性指數將會下降,而加工硬化指數將會上升。且增加晶粒尺寸亦會導致材料各方向拉伸曲線差異越來越大。本研究並以一套手機震動馬達外殼多道次成形工法驗證CAE分析技術在精微圓筒引伸成形之準確性。其結果顯示PAM-STAMP與DEFORM兩種不同之成形分析軟體皆具有相當之準確度。另外以CAE分析開發另一套手機震動馬達外殼多道次成形工法,並再一次實驗驗證,其結果亦顯示模擬結果具有一定之準確度。 由於改變晶粒尺寸將會改變材料之機械性質,進而改變引伸成形之結果。故最後本研究以不同厚度與晶粒尺寸之材料參數進行模擬,探討改變晶粒尺寸後對於單道次與二道次引伸成形之影響。模擬結果顯示隨著晶粒尺寸的增加引伸後之最薄厚度將會降低。 | zh_TW |
dc.description.abstract | With the ongoing development of product process, there is a growing demand on micro products. Though the macro-drawing process has been well-developed, the design concepts may not be directly applicable to the micro-drawing due to the size effect occurred in the micro-forming processes.
In the present study, experiments were conducted first to establish the stress-strain curves, r-values and work hardening exponents of 304 stainless steel sheets with different grain sizes. The experiment results reveal that the stress-strain and r-value become smaller and the work hardening exponent increases for larger grain sizes. The difference between stress-strain curves in various directions of 0°, 45° and 90°, respectively, is significant when the grain size increases. The stamping of a vibration motor shell of cell phone, which bears a circular cylindrical shape, was also examined in the present study. The finite element simulations were performed to evaluate the formability of the multi-stage drawing process with initial die design. The forming characteristics were identified and an optimum die design was then developed with the use of the finite element analysis. The stamping process with multi-stage tooling design based on the finite element analysis was implemented and the actual stamping experiments were conducted to verify finite element analysis. The experimental results confirm the validity of the modified tooling design and the efficiency of the finite element analysis. In order to investigate the size effect on the micro-drawing process of a circular cup, the first and second operations of the multi-stage forming processes were simulated with sheets of different grain sizes. The simulation results show that the minimum thickness decreases when the grain size increases. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:47:27Z (GMT). No. of bitstreams: 1 ntu-99-R97522507-1.pdf: 5415706 bytes, checksum: 286cc23a51de69d61e04e546eecf5ebf (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目錄
目錄 I 圖目錄 III 表目錄 VII 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究方法與步驟 3 1.3 文獻收集與整理 8 1.4 論文總覽 18 第二章 機械材料性質與尺寸效應分析 20 2.1 材料的選取 20 2.2金相實驗 22 2.2.1 材料熱處理與結晶控制 22 2.2.2 金相觀察 25 2.3 微薄板拉伸實驗 29 2.3.1 實驗設備 30 2.3.2真應力-真應變曲線 33 2.3.3基準尺寸 34 2.3.4不同方向試片之應力-應變曲線 39 2.3.4加權平均之真應力-真應變曲線 47 2.4異向性指數 50 2.5建立加工硬化指數 57 2.6 微薄板摩擦試驗 60 2.6.1摩擦實驗 60 2.6.2 試驗結果 64 2.7成形極限實驗 68 2.7.1圓格分析法 68 2.7.2實驗設備與試片 70 2.7.3實驗結果與討論 72 第三章 精微圓筒引伸模擬分析與實驗驗證 74 3.1 有限元素分析模擬軟體PAM-STAMP 74 3.2 模具幾何參數設定 75 3.3 模擬與實驗結果驗證 77 3.3.1 第一道次 80 3.3.2 第二道次 81 3.3.3 第三道次 83 3.3.4 第四道次 88 3.3.5 第五道次 91 第四章 手機震動馬達外殼成形模擬 99 4.1成形分析流程 99 4.1.1 第一道次 100 4.1.2 第二道次 107 4.1.3 第三道次 112 4.1.4 第四道次 117 4.1.5 第五道次 121 4.2 不同胚料大小之影響 125 第五章 圓筒引伸製程參數影響分析 133 5.1 晶粒尺寸對於第一道次之影響 133 5.2 晶粒尺寸與沖頭大小對最薄厚度之影響 141 5.3晶粒尺寸對於第二道次之影響 144 第六章 結論 148 參考文獻 151 | |
dc.language.iso | zh-TW | |
dc.title | 不銹鋼薄板圓筒精微引伸成形分析 | zh_TW |
dc.title | A Study on Micro-Drawing of Circular Cups with Thin Stainless Steel Sheets | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林恆勝(Heng-Sheng Lin),洪景華(Ching-Hua Hung),黃庭彬(Tyng-Bin Huang) | |
dc.subject.keyword | 不銹鋼,精微引伸,多道次,尺寸效應,晶粒尺寸,CAE分析, | zh_TW |
dc.subject.keyword | 304 stainless steel,micro-drawing,multi-stage,size effect,grain size,finite element analysis, | en |
dc.relation.page | 153 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 5.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。