Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45839
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝南瑞
dc.contributor.authorMeng-Ching Huen
dc.contributor.author胡孟青zh_TW
dc.date.accessioned2021-06-15T04:47:05Z-
dc.date.available2011-08-10
dc.date.copyright2010-08-10
dc.date.issued2010
dc.date.submitted2010-08-04
dc.identifier.citation[1] H. Furrer. Risk theory and heavy-tailed Lèvy processes, Diss. ETH 12408, Ph.D. thesis, Eidgenössische Technische Hochschule. Zurich, (1997)
[2] K. Maulik, S. I. Resnick. The self-similar and multifractal nature of a network traffic model, Stochastic Models, 19-4 (2003), 549-577
[3] K. Park, W. Willinger. Self-similar network traffic and performance evaluation. John Wiley & Sons, Inc. (2000)
[4] L. de Haan. On regular variation and its application to the weak convergence of sample Extremes, Mathematisch Centrum, Amsterdam, (1970).
[5] M. S. Taqqu, W. Willinger, and R. Sherman. Proof of a fundamental result in self-similar traffic modeling, Comput. Comm. Rev., 27 (1997), 5-23
[6] O. Boxma and J. W. Cohen. Heavy traffic analysis for the GI/G/1 queue with heavy- tailed distributions. Queuing Systems Theory Appl., 33-1-3 (1999), 177-204
[7] S. I. Resnick and H. Rootzén. Self-similar communication models and very heavy tails, Ann. Appl. Probab., 10 (2000), 753-778
[8] S. I. Resnick and G. Samorodnitsky. A heavy traffic approximation for workload processes with heavy tailed service requirements, Management Sci., 46 (2000), 1236- 1248
[9] S. I. Resnick. A probability path, Birkhäuser Boston, Cambridge, MA, (1998).
[10] S. I. Resnick. Heavy-tail Phenomena: probabilistic and statistical modeling, Springer. (2007)
[11] T. Mikosch, S. I. Resnick, H. Rootzén, and A. W. Stegeman. Is network approxi- mated by stable Lèvy motion or fractional Brownian motion?, Ann. Appl. Probab., 12-1 (2002), 23-68.
[12] T.Lindvall, Weak convergence of probability measures and random functions in the function space . J. Appl. Probab. ,10 (1973), 109-121
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45839-
dc.description.abstract近年來在網路資料傳輸的研究上,發現許多與傳統網路模型不同的特點,其中主要有自我相似性(self-similarity),長期相依性(long-range dependence),以及厚尾現象(heavy-tail)。本文首先解釋傳輸檔案的厚尾現象與長期相依性之間的關聯性,接著用數學方法解釋在假設傳輸檔案具有厚尾現象且傳輸速度為定值的情況下,累積的傳輸量將近似穩定Lèvy運動(stable Lèvy motion) 或碎形布朗運動(Fractional Brownian motion),其差別在於傳輸成長速率的不同。最後一段討論在只有一個伺服器的情況下,當傳輸交通繁重時,在某些假設條件下,用戶端等待時間將會趨近一個特殊的Mittag-Leffler分布。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T04:47:05Z (GMT). No. of bitstreams: 1
ntu-99-R95221029-1.pdf: 578591 bytes, checksum: 37bf1b166886033b0cae5d2511816598 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
Contents IV
1.Introduction 1
2.Some Math Tools 4
2.1 The Infinite Node Poisson Model 4
2.2 Regular Variation 5
2.3 Stable Lèvy Motion 6
2.4 Lyapunov’s Limit Theorem 8
2.5 The space D[0,1] and D[0,∞) 8
3. Long Range Dependence 12
4.Cumulative Traffic on Large Time Scale Under Slow Growth15
4.1 Slow Growth Condition 16
4.2 Basic decomposition 18
4.3 Approximation to Stable Levy motion 20
5.Cumulative Traffic on Large Time Scale Under Fast Growth25
5.1 Fast Growth Condition 25
5.2 Approximation to Fractional Brownian motion 25
6. Heavy Traffic Limit Theorem 31
6.1 Waiting Time Process 31
6.2 Approximation to a negative-drift random walk 34
6.3 Approximation to supremum of a negative-drift random walk 37
6.4 Heavy-tail Approximation for Queues with Heavy-Tail Services 40
6.5 Examples for Heavy Traffic Approximation 47
Reference 49
dc.language.isozh-TW
dc.title厚尾理論於網路傳輸模型之應用zh_TW
dc.titleHeavy-Tail Applications to Internet Modelsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王振男,張志中
dc.subject.keyword厚尾現象,碎形布朗運動,Levy過程,zh_TW
dc.subject.keywordheavy-tail,Fractional Brownian Motion,Levy Process,en
dc.relation.page50
dc.rights.note有償授權
dc.date.accepted2010-08-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
565.03 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved