Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45838
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor藍崇文
dc.contributor.authorHua-Kai Linen
dc.contributor.author林華愷zh_TW
dc.date.accessioned2021-06-15T04:47:04Z-
dc.date.issued2010
dc.date.submitted2010-08-04
dc.identifier.citation[1] T. Pusztai, G. Bortel, L. Granasy, Phase field theory of polycrystalline solidification in three dimensions, Europhysics Letters, 71 (2005) 131-137.
[2] A. Karma, W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Physical Review E, 57 (1998) 4323-4349.
[3] M.E. Glicksman, N.B. Singh, Effects of Crystal Melt Interfacial Energy Anisotropy on Dendritic Morphology and Growth-Kinetics, Journal of Crystal Growth, 98 (1989) 277-284.
[4] W.W. Mullins, R.F. Sekerka, Stability of Planar Interface during Solidification of Dilute Binary Alloy, Journal of Applied Physics, 35 (1964) 444-451.
[5] N. Provatas, N. Goldenfeld, J. Dantzig, Adaptive mesh refinement computation of solidification microstructures using dynamic data structures, Journal of Computational Physics, 148 (1999) 265-290.
[6] S.C. Huang, M.E. Glicksman, Fundamentals of Dendritic Solidification .1. Steady-State Tip Growth, Acta Metallurgica, 29 (1981) 701-715.
[7] M.E. Glicksman, Free Dendritic Growth, Materials Science and Engineering, 65 (1984) 45-55.
[8] R. Trivedi, W. Kurz, Dendritic Growth, International Materials Reviews, 39 (1994) 49-74.
[9] G. Horvay, J.W. Cahn, Dendritic and spheroidal growth, Acta Metallurgica, 9 (1961) 695-705.
[10] M.E. Glicksman, R.J. Schaefer, J.D. Ayers, Dendritic growth - test of theroy, Metallurgical Transactions a-Physical Metallurgy and Materials Science, 7 (1976) 1747-1759.
[11] D.E. Temkin, Rate of crystal needle growth in a supercooled melt, Doklady Akademii Nauk Sssr, 132 (1960) 1307-1310.
[12] R. Trivedi, Growth of dendritic needles from a supercooled melt, Acta Metallurgica, 18 (1970) 287-296.
[13] J.S. Langer, H. Mullerkrumbhaar, Theory of Dendritic Growth .2. Instabilities in Limit of Vanishing Surface-Tension, Acta Metallurgica, 26 (1978) 1689-1695.
[14] A. Barbieri, J.S. Langer, Predictions of dendritic growth rates in the linearized solvability theory, Physical Review A, 39 (1989) 5314-5325.
[15] D.A. Kessler, H. Levine, Velocity Selection in Dendritic Growth, Physical Review B, 33 (1986) 7867-7870.
[16] D.A. Kessler, J. Koplik, H. Levine, Steady-State Dendritic Crystal-Growth, Physical Review A, 33 (1986) 3352-3357.
[17] E.R. Rubinstein, M.E. Glicksman, Dendritic Grown Kinetics and Structure .1. Pivalic Acid, Journal of Crystal Growth, 112 (1991) 84-96.
[18] A. Karma, W.J. Rappel, Phase-field simulation of three-dimensional dendrites: Is microscopic solvability theory correct?, Journal of Crystal Growth, 174 (1997) 54-64.
[19] G. Wulff, On the question of speed of growth and dissolution of crystal surfaces, Zeitschrift Fur Krystallographie Und Mineralogie, 34 (1901) 449-530.
[20] C.A. Johnson, Generalization of Gibbs-Thomson Equation, Surface Science, 3 (1965) 429-444.
[21] D.W. Hoffman, J.W. Cahn, Vector Thermodynamics for Anisotropic Surfaces .1. Fundamentals and Application to Plane Surface Junctions, Surface Science, 31 (1972) 368-388.
[22] R.F. Sekerka, Analytical criteria for missing orientations on three-dimensional equilibrium shapes, Journal of Crystal Growth, 275 (2005) 77-82.
[23] W.W. Mullins, R.F. Sekerka, Morphological Stability of a Particle Growing by Diffusion or Heat Flow, Journal of Applied Physics, 34 (1963) 323-329.
[24] R. Trivedi, K. Somboonsuk, Pattern-formation during the directional solidification of binary-systems, Acta Metallurgica, 33 (1985) 1061-1068.
[25] J.A. Warren, J.S. Langer, Prediction of dendritic spacings in a directional-solidificaion experiment, Physical Review E, 47 (1993) 2702-2712.
[26] M. Tokairin, K. Fujiwara, K. Kutsukake, N. Usami, K. Nakajima, Formation mechanism of a faceted interface: In situ observation of the Si(100) crystal-melt interface during crystal growth, Physical Review B, 80 (2009) 174108.
[27] K. Fujiwara, K. Nakajima, T. Ujihara, N. Usami, G. Sazaki, H. Hasegawa, S. Mizoguchi, K. Nakajima, In situ observations of crystal growth behavior of silicon melt, Journal of Crystal Growth, 243 (2002) 275-282.
[28] K. Fujiwara, Y. Obinata, T. Ujhara, N. Usami, G. Sazaki, K. Nakajima, In-situ observations of melt growth behavior of polycrystalline silicon, Journal of Crystal Growth, 262 (2004) 124-129.
[29] J. Glimm, J. Grove, B. Lindquist, O.A. McBryan, G. Tryggvason, The Bifurcation of Tracked Scalar Waves, Siam Journal on Scientific and Statistical Computing, 9 (1988) 61-79.
[30] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of Computational Physics, 100 (1992) 25-37.
[31] D. Juric, G. Tryggvason, A front-tracking method for dendritic solidification, Journal of Computational Physics, 123 (1996) 127-148.
[32] H.S. Udaykumar, W. Shyy, A grid-supported marker particle scheme for interface tracking, Numerical Heat Transfer Part B-Fundamentals, 27 (1995) 127-153.
[33] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988) 12-49.
[34] S. Osher, R.P. Fedkiw, Level Set Methods: An Overview and Some Recent Results, Journal of Computational Physics, 169 (2001) 463-502.
[35] M. Sussman, E. Fatemi, P. Smereka, S. Osher, An improved level set method for incompressible two-phase flows, Computers & Fluids, 27 (1998) 663-680.
[36] M. Sussman, A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell, M.L. Welcome, An Adaptive Level Set Approach for Incompressible Two-Phase Flows, Journal of Computational Physics, 148 (1999) 81-124.
[37] M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, Journal of Computational Physics, 162 (2000) 301-337.
[38] G.J. Fix, Free Boundary Problems:Theory and Applications, 2 (1983) 580.
[39] J.S. Langer, Directions in Condensed Matter Physics, (1986) 165.
[40] J.B. Collins, H. Levine, Diffuse interface model of diffusion-limited crystal growth, Physical Review B, 31 (1985) 6119-6122.
[41] G. Caginalp, J.T. Lin, A numerical-analysis of an anisotropic phase field model, Ima Journal of Applied Mathematics, 39 (1987) 51-66.
[42] R. Kobayashi, Modeling and Numerical Simulations of Dendritic Crystal-Growth, Physica D, 63 (1993) 410-423.
[43] R. Kobayashi, A Numerical Approach to Three-Dimensional Dendritic Solidification, Experimental Mathematics, 3 (1994) 59-81.
[44] R.J. Braun, G.B. McFadden, S.R. Coriell, Morphological instability in phase-field models of solidification, Physical Review E, 49 (1994) 4336-4352.
[45] S.L. Wang, R.F. Sekerka, Computation of the dendritic operating state at large supercoolings by the phase field model, Physical Review E, 53 (1996) 3760-3776.
[46] G. Caginalp, An analysis of a phase field model of a free-boundary, Archive for Rational Mechanics and Analysis, 92 (1986) 205-245.
[47] M. Fabbri, V.R. Voller, The phase-field method in the sharp-interface limit: A comparison between model potentials, Journal of Computational Physics, 130 (1997) 256-265.
[48] P.W. Voorhees, S.R. Coriell, G.B. McFadden, R.F. Sekerka, The effect of anisotropic crystal melt surface-tension on grain boundary groove morphology, Journal of Crystal Growth, 67 (1984) 425-440.
[49] S.G. Kim, W.T. Kim, Phase field modeling of dendritic growth with high anisotropy, Journal of Crystal Growth, 275 (2005) e355-e360.
[50] J.J. Eggleston, G.B. McFadden, P.W. Voorhees, A phase-field model for highly anisotropic interfacial energy, Physica D, 150 (2001) 91-103.
[51] H. Kasajima, E. Nagano, T. Suzuki, S. Gyoon Kim, W. Tae Kim, Phase-field modeling for facet dendrite growth of silicon, Science and Technology of Advanced Materials, 4 (2003) 553-557.
[52] Z. Chen, C.L. Chen, L.M. Hao, Numerical simulation of facet dendrite growth, Transactions of Nonferrous Metals Society of China, 18 (2008) 938-943.
[53] J.M. Debierre, A. Karma, F. Celestini, R. Guerin, Phase-field approach for faceted solidification, Physical Review E, 68 (2003) 041604.
[54] M. Burger, Numerical simulation of anisotropic surface diffusion with curvature-dependent energy, Journal of Computational Physics, 203 (2005) 602-625.
[55] S. Torabi, J. Lowengrub, A. Voigt, S. Wise, A new phase-field model for strongly anisotropic systems, Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 465 (2009) 1337-1359.
[56] B. Morin, K.R. Elder, M. Sutton, M. Grant, Model of the Kinetics of Polymorphous Crystallization, Physical Review Letters, 75 (1995) 2156-2159.
[57] L.-Q. Chen, W. Yang, Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics, Physical Review B, 50 (1994) 15752.
[58] I. Steinbach, F. Pezzolla, B. Nestler, M. Seesselberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende, A phase field concept for multiphase systems, Physica D, 94 (1996) 135-147.
[59] R. Kobayashi, J.A. Warren, W.C. Carter, Vector-valued phase field model for crystallization and grain boundary formation, Physica D, 119 (1998) 415-423.
[60] J.A. Warren, R. Kobayashi, A.E. Lobovsky, W.C. Carter, Extending phase field models of solidification to polycrystalline materials, Acta Materialia, 51 (2003) 6035-6058.
[61] Glicksma.Me, C.L. Vold, Determination of Absolute Solid-Liquid Interfacial Free Energies in Metals, Acta Metallurgica, 17 (1969) 1-11.
[62] J.E. Blendell, W.C. Carter, C.A. Handwerker, Faceting and wetting transitions of anisotropic interfaces and grain boundaries, Journal of the American Ceramic Society, 82 (1999) 1889-1900.
[63] L. Granasy, T. Borzsonyi, T. Pusztai, Nucleation and bulk crystallization in binary phase field theory, Physical Review Letters, 88 (2002) 206105.
[64] R. Kobayashi, J.A. Warren, Modeling the formation and dynamics of polycrystals in 3D, Physica a-Statistical Mechanics and Its Applications, 356 (2005) 127-132.
[65] L. Granasy, T. Pusztai, D. Saylor, J.A. Warren, Phase field theory of heterogeneous crystal nucleation, Physical Review Letters, 98 (2007) 035703.
[66] R.D. Gretz, Role of Adsorption in Heterogeneous Vapor-Solid Nucleation, Journal of Physics and Chemistry of Solids, 27 (1966) 1849-1861.
[67] N. Provatas, N. Goldenfeld, J. Dantzig, Efficient computation of dendritic microstructures using adaptive mesh refinement, Physical Review Letters, 80 (1998) 3308-3311.
[68] R. Tonhardt, G. Amberg, Dendritic growth of randomly oriented nuclei in a shear flow, Journal of Crystal Growth, 213 (2000) 161-187.
[69] R.J. Braun, B.T. Murray, Adaptive phase-field computations of dendritic crystal growth, Journal of Crystal Growth, 174 (1997) 41-53.
[70] J.H. Jeong, N. Goldenfeld, J.A. Dantzig, Phase field model for three-dimensional dendritic growth with fluid flow, Physical Review E, 6404 (2001) 041602.
[71] C.C. Liu, Adaptive Finite Volume Methods for Solidification Problems, National Taiwan University, Master Thesis, (2000).
[72] C.M. Hsu, Adaptive Phase Field Simulation of Dendritic Crystal Growth in a Forced Flow, National Taiwan University, Master Thesis, (2001).
[73] C.W. Lan, C.C. Liu, C.M. Hsu, An adaptive finite volume method for incompressible heat flow problems in solidification, Journal of Computational Physics, 178 (2002) 464-497.
[74] C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, X. Tong, Modeling melt convection in phase-field simulations of solidification, Journal of Computational Physics, 154 (1999) 468-496.
[75] S.V. Patankar, Numerical heat transfer and fluid flow, McGraw-Hill, New York, 1980.
[76] http://www.euclideanspace.com/maths/geometry/rotations/euler/index.htm.
[77] T. Haxhimali, A. Karma, F. Gonzales, M. Rappaz, Orientation selection in dendritic evolution, Nature Materials, 5 (2006) 660-664.
[78] C.W. Lan, C.M. Hsu, C.C. Liu, Efficient adaptive phase field simulation of dendritic growth in a forced flow at low supercooling, Journal of Crystal Growth, 241 (2002) 379-386.
[79] C.W. Lan, C.M. Hsu, C.C. Liu, Y.C. Chang, Adaptive phase field simulation of dendritic growth in a forced flow at various supercoolings, Physical Review E, 65 (2002) 061601.
[80] C.C. Chen, C.W. Lan, Efficient adaptive three-dimensional phase-field simulation of dendritic crystal growth from various supercoolings using rescaling, Journal of Crystal Growth, 311 (2009) 702-706.
[81] P. Chen, Phase Field Modeling of Growth Behaviors of Polycrystalline Silicon, National Taiwan University, Master Thesis, (2007).
[82] X. Ai, Y. Shu, B.Q. Li, Discontinuous finite-element phase-field modeling of polycrystalline grain growth with convection, Computers & Mathematics with Applications, 52 (2006) 721-734.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45838-
dc.description.abstract在自然界的物理現象中,像是冰晶生長和一般工業長晶程序中,模擬高非均向性樹枝狀晶體生長及多晶矽生長是很重要的一個課題。相場模式在模擬固化問題一直是很強大的工具,但是在三維高非均向性物質的模擬上仍然很難克服;此外,二維多晶生長模擬之前在實驗室已經有很顯著的發展,故發展三維多晶模擬的模式也是個重要的課題。因此本論文中,吾人利用三維多晶模式進行模擬,並且發展出高非均向性物質的模擬方法。
首先,在我們適應性相場模擬中,發展了一個簡單解決三維高非均向性物質的方法。二維和三維中,晶體平衡形狀和解析解幾乎一致。純物質樹枝狀晶體在不同過冷度和非均向性強度下比較可以看出,非均向性愈強的樹枝狀尖端愈尖,過冷度愈高其形狀則愈接近平衡形狀。接著則是利用了Pusztai等人[1]的三維多晶模擬的模式進行模擬。第一步先利用晶界溝來和解析接觸角及解析形狀比較,得到一致性的結果並且接觸角和解析解的計算也是接近的。再來則是利用Karma等人[2]的模式,經過參數選取的不同,可以重現之前實驗室在晶粒競爭上的定性研究行為,最後則是一個簡單三維多晶晶粒碰撞後的晶態觀察。而第三部分,定量模擬上也有顯著的突破,和實驗觀察到的矽晶{111}面及界面不穩定中的波長,都能得到相同的數量級,而其中長速仍然和實驗上有著一倍的差距,歸因於實驗上在散熱項的熱擴散係數及降溫溫梯的估計和模擬上的理論值有些微的差距。
zh_TW
dc.description.abstractThe modeling of dendritic crystal growth of highly anisotropic materials is important in understanding the physics for nature phenomena, such as snow growth, and industrial processes, such as polycrystalline silicon growth. Phase field modeling has emerged as a powerful tool in such a simulation, but the description of the anisotropic function for three-dimensional (3D) interfacial energy without miss-orientation remains quite difficult. Besides, polycrystalline two-dimensional (2D) simulation has been successfully present in previous work in our laboratory. Another model, which can be solved for three-dimensional polycrystalline simulation, is applied. In this thesis, three main parts are separated for our results.
First, a simple method is proposed in our adaptive phase field model. In 2D, and 3D, the simulated equilibrium shapes with different anisotropic strengths are first compared with the exact solutions and they are in good agreement. The dendritic crystal growth of a pure material with different anisotropic strengths at various overcoolings is further simulated. For the second part, polycrystalline model proposed by Pusztai et al. [1] is applied for solving the problems, such as the correctness of the model by grain boundary groove, the grain competition including the kinetic effect, and the two seeds impingement in 3D. Finally, a quantitative analysis for the contract between the simulation and the experiment is further discussed. The tendency of the silicon facet formation and the order of magnitude are well- comparable, although not extremely accurate. Some estimation for the physical and experimental properties are believed for this slightly divergence between simulation and experiment. The long and short of it, a method of highly anisotropic function and a application of polycrystalline in 3D are workable.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:47:04Z (GMT). No. of bitstreams: 1
ntu-99-R97524062-1.pdf: 2282830 bytes, checksum: 63564d34e49a7b27f464ee73ae79770d (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAbstract (Chinese) I
Abstract II
Table of Contents III
Nomenclature VI
List of Tables XI
List of Figures XII
Chapter 1 Introduction 1
1-1 Exordium 1
1-2 Paper Review 2
1-2-1 Dendrite Theory 2
1-2-2 The Equilibrium Shape of Phases 5
1-2-3 Interface Stability 8
1-3 Motivation 10
Chapter 2 Phase-Field Model and Numerical Method 11
2-1 Modeling of Solidification 11
2-2 Phase-Field Model 13
2-2-1 High Anisotropy Model 16
2-2-2 Polycrystalline 18
2-3 Numerical Methods 22
2-3-1 Adaptive Mesh Refinement (AMR) 22
2-3-2 Finite Volume Method (FVM) 25
2-4 Governing Equations 28
2-4-1 Energy Equation 28
2-4-2 Phase-Field Equation 30
2-4-3 Orientation Field Equation 34
2-4-4 Dimensionless Equations 37
Chapter 3 Results and Discussions 38
3.1 Mono-Crystal Growth Behavior 38
3-1-1 Equilibrium Shape 40
3-1-2 Dendrite Simulation in 2D 44
3-1-3 Dendrite Simulation in 3D 47
3.2 Poly-Crystal Growth Behavior 53
3-2-1 Grain Boundary Groove 54
3-2-2 Grain Competition 58
3-2-3 Impingement of Two Seeds 61
3.3 Quantitatively Simulation of Facet Formation 62
Chapter 4 Conclusions and Future Direction 67
Reference 69
dc.language.isoen
dc.subject相場模式zh_TW
dc.subject高非均向性zh_TW
dc.subject多晶zh_TW
dc.subjectPolycrystallineen
dc.subjectPhase Field Modelen
dc.subjectHighly Anisotropyen
dc.title適應性相場模式在多晶高非均向性晶體生長之研究zh_TW
dc.titleAdaptive Phase Field Modeling in Crystal Growth of Highly Anisotropic Polycrystallineen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張正陽,高振宏,何國川
dc.subject.keyword相場模式,高非均向性,多晶,zh_TW
dc.subject.keywordPhase Field Model,Highly Anisotropy,Polycrystalline,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2010-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved