Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45822
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱時宜(Shih-I Chu)
dc.contributor.authorYing-Hua Laien
dc.contributor.author賴盈樺zh_TW
dc.date.accessioned2021-06-15T04:46:46Z-
dc.date.available2015-08-13
dc.date.copyright2010-08-13
dc.date.issued2010
dc.date.submitted2010-08-04
dc.identifier.citationBibliography
[1] Richard Feynman. There’s plenty of room at the bottom. Eng. Sci. 23 (1960) 22 lecture given at the APS meeting 1959.
[2] Rafael S′anchez, Gloria Platero, and Tobias Brandes. Resonance fluorescence in transport through quantum dots: Noise properties. Phys. Rev. Lett., 98(14):146805, Apr 2007.
[3] R. Gezzi, Th. Pruschke, and V. Meden. Functional renormalization group for nonequilibrium quantum many-body problems. Phys. Rev. B, 75(4):045324, Jan 2007.
[4] Sølve Selstø and Morten Førre. Coherent single-electron transport between coupled quantum dots. Phys. Rev. B, 74(19):195327, Nov 2006.
[5] Gloria Platero and R. Aguado. Photon-assisted transport in semiconductor nanostructures. Physics Reports, 395(1-2):1 – 157, 2004.
[6] Ram′on Aguado and Gloria Platero. Photoinduced multistable phenomena in thetunneling current through doped superlattices. Phys. Rev. Lett., 81(22):4971–4974, Nov 1998.
[7] Ram′on Aguado and Gloria Platero. Dynamical localization and absolute negative conductance in an ac-driven double quantum well. Phys. Rev. B, 55(19):12860–12863, May 1997.
[8] C. A. Stafford and Ned S. Wingreen. Resonant photon-assisted tunneling through a double quantum dot: An electron pump from spatial rabi oscillations. Phys. Rev. Lett., 76(11):1916–1919, Mar 1996.
[9] Carola Meyer, Jeroen M. Elzerman, and Leo P. Kouwenhoven. Photon-assisted tunneling in a carbon nanotube quantum dot. Nano Letters, 7:295, 2007.
[10] T. Kwapi′nski, R. Taranko, and E. Taranko. Photon-assisted electron transport through a three-terminal quantum dot system with nonresonant tunneling channels. Phys. Rev. B, 72(12):125312, Sep 2005.
[11] Qing-feng Sun and Tsung-han Lin. Influence of microwave fields on the electron tunneling through a quantum dot. Phys. Rev. B, 56(7):3591–3594, Aug 1997.
[12] Qing-feng Sun, Jian Wang, and Tsung-han Lin. Photon sidebands of the ground state and the excited state of a quantum dot: A nonequilibrium green-function approach. Phys. Rev. B, 58(19):13007–13014, Nov 1998.
[13] T. H. Oosterkamp, L. P. Kouwenhoven, A. E. A. Koolen, N. C. van der Vaart, and C. J. P. M. Harmans. Photon sidebands of the ground state and first excited state of a quantum dot. Phys. Rev. Lett., 78(8):1536–1539, Feb 1997.
[14] P. K. Tien and J. P. Gordon. Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phys. Rev., 129(2):647–651, Jan 1963.
[15] T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi, R. V. Hijman, S. Tarucha, and L. P. Kouwenhoven. Microwave spectroscopy of a quantum-dot molecule. Nature, 395:873, 1998.
[16] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven. Electron transport through double quantum dots. Rev. Mod. Phys., 75(1):1–22, Dec 2002.
[17] Tak-San Ho, Shih-Han Hung, Hsing-Ta Chen, and Shih-I Chu. Memory effect on the multiphoton coherent destruction of tunneling in the electron transport of nanoscale systems driven by a periodic field: A generalized Floquet approach.
Phys. Rev. B, 79(23):235323, Jun 2009.
[18] F. Grossmann, T. Dittrich, P. Jung, and P. H‥anggi. Coherent destruction of tunneling. Phys. Rev. Lett., 67(4):516–519, Jul 1991.
[19] F. GroBmann and P. H‥anggi. Localization in a driven two-level dynamics. Europhys. Lett., 18(7):571, 1992.
[20] B. L. Altshuler and L. I. Glazman. Condensed matter physics:pumping electrons. Science, 283:5409, 1999.
[21] Mathias Wagner and Fernando Sols. Subsea electron transport: Pumping deep within the fermi sea. Phys. Rev. Lett., 83(21):4377–4380, Nov 1999.
[22] Keiji Saito and Yosuke Kayanuma. Nonadiabatic electron manipulation in quantum dot arrays. Phys. Rev. B, 70(20):201304, Nov 2004.
[23] Antti-Pekka Jauho, Ned S. Wingreen, and Yigal Meir. Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B, 50(8):5528–5544, Aug 1994.
[24] Leo P. Kadanoff and Gordon Baym. Quantum statistical mechanics : Green's function methods in equilibrium and nonequilibrium problems. Addison-Wesley Pub. Co., Advanced Book Program,, 1962.
[25] L. V. Keldysh. Diagram technique for nonequilibrium processes. Sov. Phys. JETP, 20(4):1018–1026, 1964.
[26] J‥org Lehmann, S′ebastien Camalet, Sigmund Kohler, and Peter H‥anggi. Laser controlled molecular switches and transistors. Chemical Physics Letters, 368(3-4):282 – 288, 2003.
[27] S′ebastien Camalet, J‥org Lehmann, Sigmund Kohler, and Peter H‥anggi. Current noise in ac-driven nanoscale conductors. Phys. Rev. Lett., 90(21):210602, May
2003.
[28] S′ebastien Camalet, Sigmund Kohler, and Peter H‥anggi. Shot-noise control in ac-driven nanoscale conductors. Phys. Rev. B, 70(15):155326, Oct 2004.
[29] Jon H. Shirley. Solution of the schr‥odinger equation with a hamiltonian periodic in time. Phys. Rev., 138(4B):B979–B987, May 1965.
[30] Shih-I Chu and Dmitry A. Telnov. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton
processes in intense laser. Phys. Rep., 390:1–131, 2004. Invited review article.
[31] Sigmund Kohler, J‥org Lehmann, and Peter H‥anggi. Driven quantum transport on the nanoscale. Physics Reports, 406(6):379 – 443, 2005.
[32] T. Kwapi′nski, R. Taranko, and E. Taranko. Band structure effects in time-dependent electron transport through the quantum dot. Phys. Rev. B, 66(3):035315, Jul 2002.
[33] Danqiong Hou, Yuhui He, Xiaoyan Liu, Jinfeng Kang, Jie Chen, and Ruqi Han. Time-dependent transport: Time domain recursively solving negf technique. Physica E: Low-dimensional Systems and Nanostructures, 31(2):191 – 195, 2006.
[34] P. My‥oh‥anen, A. Stan, G. Stefanucci, and R. van Leeuwen. A many-body approach to quantum transport dynamics: Initial correlations and memory effects.
Europhys. Lett., 84:67001, 2008.
[35] Ned S. Wingreen and Yigal Meir. Anderson model out of equilibrium: Noncrossing-approximation approach to transport through a quantum dot. Phys. Rev. B, 49(16):11040–11052, Apr 1994.
[36] Sven Welack, Michael Schreiber, and Ulrich Kleinekath‥ofer. The influence of ultrafast laser pulses on electron transfer in molecular wires studied by a
non-markovian density-matrix approach. The Journal of Chemical Physics, 124(4):044712, 2006.
[37] Tak-San Ho, Shih-I Chu, and J. V. Tietz. Semiclassical many-mode Floquet theory. Chem. Phys. Lett., 96:464–471, 1983.
[38] Tak-San Ho and Shih-I Chu. Semiclassical many-mode Floquet theory. III. SU(3) dynamical evolution of three-level systems in intense bichromatic fields. Phys.
Rev. A, 31:659–676, 1985.
[39] Tak-San Ho and Shih-I Chu. Semiclassical many-mode Floquet theory. II. Nonlinear multiphoton dynamics of a two-level system in a strong bichromatic field. J. Phys. B: At. Mol. Phys., 17:2101–2128, 1984.
[40] Tak-San Ho and Shih-I Chu. Semiclassical many-mode Floquet theory. IV. Co-herent population trapping and SU(3) dynamical evolution of dissipative threelevel systems in intense bichromatic fields. Phys. Rev. A, 32:377–395, 1985.
[41] Kwanghsi Wang, Tak-San Ho, and Shih-I Chu. Multiphoton dynamics and
resonance lineshapes in three-level systems: many-mode Floquet treatment. J. Phys. B: At. Mol. Phys., 18:4539–4556, 1985.
[42] Gaston Floquet. Sur les ′equations diff′erentielles lin′earies `a coefficients p′eriodiques. Ann. Ecole Norm. Sup., 12:47–88, 1883.
[43] Shih-I Chu. Recent developments in semiclassical Floquet theories for intense field multiphoton processes. In Advances in Atomic and Molecular Physics, volume 21, pages 197–253. Academic Press, New York, 1985.
[44] Shih-I Chu. Generalized Floquet theoretical approaches to multiphoton and nonlinear optical processes in intense laser fields. In Advances in Chemical Physics, volume 73, pages 739–799. John Wiley & Sons, New York, 1989.
[45] D. R. Dion and J. O. Hirschfelder. Time-dependent perturbation of a two-state quantum system by a sinusoidal field. Adv. Chem. Phys., 35:265–350, 1976.
[46] Hideo Sambe. Steady states and quasienergies of a quantum-mechanical system in an oscillating field. Phys. Rev. A, 7(6):2203–2213, Jun 1973.
[47] Ramamurti Shankar. Principles of Quantum Mechanics. Plenum Press, 1980.
[48] J. J. Sakurai. Modern quantum mechanics. Addison-Wesley, 1985.
[49] Shih-I Chu. Multiphoton processes in intense laser fields. In Workshop on Atomic Spectroscopy and Its Related Dynamical Properties, volume 24, pages 1–18, Taiwan, R.O.C., 1986. Institute of Atomic and Molecular Sciences, Academia Sinica.
[50] F. Bloch and A. Siegert. Magnetic resonance for nonrotating fields. Phys. Rev., 57(6):522–527, Mar 1940.
[51] R. H. Blick, R. J. Haug, J. Weis, D. Pfannkuche, K. v. Klitzing, and K. Eberl. Single-electron tunneling through a double quantum dot: The artificial molecule. Phys. Rev. B, 53(12):7899–7902, Mar 1996.
[52] Richard M. Martin. Electronic structure : basic theory and practical methods. Cambridge University Press, 2004.
[53] Supriyo Datta. Electronic transport in mesoscopic systems. Cambridge University Press, 1995.
[54] Neil W. Ashcroft and N. David. Mermin. Solid state physics. Holt, Rinehart and Winston, 1976.
[55] U. Fano. Ionization yield of radiations. ii. the fluctuations of the number of ions. Phys. Rev., 72(1):26–29, Jul 1947.
[56] F. A Berezin. The method of second quantization. Academic Press, 1966.
[57] R. K. Pathria. Statistical mechanics. Butterworth-Heinemann, 1996.
[58] Massimiliano Di Ventra. Electrical transport in nanoscale systems. Cambridge University Press, 2008.
[59] L. D. Landau and E.M. Lifshitz. Relativistic quantum theory. Pergamon Press, 1971.
[60] Hartmut Haug and Antti-Pekka Jauho. Quantum Kinetics in Transport and Optics of Semiconductors [electronic resource]. Springer-Verlag Berlin Heidelberg, 2008.
[61] J. Rammer and H. Smith. Quantum field-theoretical methods in transport theory of metals. Rev. Mod. Phys., 58(2):323–359, Apr 1986.
[62] Gianluca Stefanucci and Carl-Olof Almbladh. Time-dependent partition-free approach in resonant tunneling systems. Phys. Rev. B, 69(19):195318, May
2004.
[63] P. Danielewicz1. Quantum theory of nonequilibrium processes. Annals of Physics, 152:239, 1984.
[64] J. Rammer. Quantum transport theory. Perseus Books, 1998.
[65] David K. Ferry and Stephen M. Goodnick. Transport in nanostructures. Cambridge University Press, 1997.
[66] Andreas Buchleitner, Dominique Delande, and Jakub Zakrzewski. Nondispersive wave packets in periodically driven quantum systems. Physics Reports, 368(5):409 – 547, 2002.
[67] Suqing Duan, Wei Zhang, Wanyuan Xie, Yurong Ma, and Weidong Chu. Timedependent transport of symmetric lambda-type coupled triple quantum dots: competition between coherent destruction of tunneling and fano resonance. New Journal of Physics, 11:013037, January 2009.
[68] Tomasz Kwapi′nski, Sigmund Kohler, and Peter H‥anggi. Discontinuous conductance of bichromatically ac-gated quantum wires. Phys. Rev. B, 79(15):155315, Apr 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45822-
dc.description.abstract時變電子傳輸的過程,通常考慮在寬帶極限下並由週期性外加場驅動。在此論文中,我們以廣義弗羅奎茲(Floquet)方法處理由單一或雙外加場驅動的電子傳輸。為了處理雙外加場中不相稱的(incommensurate)頻率問題,我們採用多模弗羅奎茲理論(many-mode Floquet theory)將時變且非週期性的哈密爾敦量(Hamiltonian),轉變成非時變的弗羅奎茲矩陣(Floquet matrix),從原本的偏微分方程簡化成解特徵值的問題。這個方法可用來分析由外加場驅動的電子傳輸在電極─量子點─電極系統下的直流電流。由週期性外加場的驅動下,探討對稱型式(Λ-type)三量子點的同調
穿隧截止現象。此外,在雙頻率外加場的影響下,發現直流電流對於兩頻率的可公度性(commensurability)非常靈敏。這些有趣的物理現象,提供製作量子裝置一種輕易控制電流的方法。
zh_TW
dc.description.abstractTime-dependent electron transport processes are often driven by a periodic field and studied in the wide-band limit. In this thesis, we extend the generalized Floquet approach beyond wide-band limit for the nonperturbative treatment of electron transport driven by monochromatic or bichromatic fields. In order to deal with the case of bichromatically driven fields with incommensurate frequencies, we adopt the many-mode Floquet theory to reduce the non-periodically time-dependent Hamiltonian into an equivalent time-independent infinite-dimensional generalized Floquet matrix eigenvalue problem. The approach is used to perform a detailed analysis of the electron-transport dc current in the electrode-quantum dots-electrode system driven by external fields, including periodic and bichromatic fields. The coherent destruction of tunneling phenomenon is studied in the case of symmetric Λ-type triple quantum dots driven by a periodic field. Besides, we show that the dc current depends sensitively on the commensurability of the driving frequencies. These interesting physical phenomena may provide a convenient way to control the current by fabricating a quantum device.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:46:46Z (GMT). No. of bitstreams: 1
ntu-99-R97222053-1.pdf: 1789625 bytes, checksum: 3fd38d21617761fab50e4c10a8d9e4b0 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
Committee Approval Form i
Acknowledgements ii
Chinese Abstract iii
Abstract iv
1 Introduction 1
2 Generalized Floquet Formalism 5
2.1 Floquet Formalism in a Periodic Field 6
2.1.1 General Properties of Quasienergy States 9
2.1.2 General Properties of Time-Independent Floquet Hamiltonian 10
2.2 Many-Mode Floquet Theory in Polychromatic Fields 18
2.2.1 Many-Mode Floquet Theory 18
2.2.2 A Simple Case of Many-Mode Floquet Theory:
Two-Level System in a Strong Bichromatic Field 23
3 Driven Electron Transport on the Nanoscale 29
3.1 The Lead-Wire Model 29
3.2 Charge, Current, and Current Noise 32
3.3 The Heisenberg Equations of Motion 34
3.4 Lead Elimination 38
3.5 Nonequilibrium Green’s Function (NEGF) 41
4 Generalized Floquet Approach for Driven Electron Transport 49
4.1 Wide-Band Limit (WBL) 50
4.2 Beyond Wide-Band Limit:
The Lorentzian Spectral Density (LSD) Model
for the Lead-Wire Couplings 54
5 Results and Discussions 63
5.1 Symmetric Λ-Type Coupled Triple Quantum Dots in a Periodic Field 63
5.2 Triple Quantum Dots with Equal On-Site Energies in Bichromatic Fields 67
6 Conclusions and Perspectives 73
Bibliography 75
dc.language.isoen
dc.title以廣義弗羅奎茲(Floquet)方法處理奈米尺度下時變電子傳輸zh_TW
dc.titleFloquet Methods for the Treatment of Time-dependent Electron Transport on the Nanoscaleen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高英哲(Ying-Jer Kao),管希聖(Hsi-Sheng Goan)
dc.subject.keyword電子傳輸,奈米尺度,量子點,雙色場,Floquet,zh_TW
dc.subject.keywordelectron transport,nanoscale,quantum dot,bichromatic fields,Floquet,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2010-08-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved